59 research outputs found

    No imminent quantum supremacy by boson sampling

    Get PDF
    It is predicted that quantum computers will dramatically outperform their conventional counterparts. However, large-scale universal quantum computers are yet to be built. Boson sampling is a rudimentary quantum algorithm tailored to the platform of photons in linear optics, which has sparked interest as a rapid way to demonstrate this quantum supremacy. Photon statistics are governed by intractable matrix functions known as permanents, which suggests that sampling from the distribution obtained by injecting photons into a linear-optical network could be solved more quickly by a photonic experiment than by a classical computer. The contrast between the apparently awesome challenge faced by any classical sampling algorithm and the apparently near-term experimental resources required for a large boson sampling experiment has raised expectations that quantum supremacy by boson sampling is on the horizon. Here we present classical boson sampling algorithms and theoretical analyses of prospects for scaling boson sampling experiments, showing that near-term quantum supremacy via boson sampling is unlikely. While the largest boson sampling experiments reported so far are with 5 photons, our classical algorithm, based on Metropolised independence sampling (MIS), allowed the boson sampling problem to be solved for 30 photons with standard computing hardware. We argue that the impact of experimental photon losses means that demonstrating quantum supremacy by boson sampling would require a step change in technology.Comment: 25 pages, 9 figures. Comments welcom

    gViz, a novel tool for the visualization of co-expression networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The quantity of microarray data available on the Internet has grown dramatically over the past years and now represents millions of Euros worth of underused information. One way to use this data is through co-expression analysis. To avoid a certain amount of bias, such data must often be analyzed at the genome scale, for example by network representation. The identification of co-expression networks is an important means to unravel gene to gene interactions and the underlying functional relationship between them. However, it is very difficult to explore and analyze a network of such dimensions. Several programs (Cytoscape, yEd) have already been developed for network analysis; however, to our knowledge, there are no available GraphML compatible programs.</p> <p>Findings</p> <p>We designed and developed gViz, a GraphML network visualization and exploration tool. gViz is built on clustering coefficient-based algorithms and is a novel tool to visualize and manipulate networks of co-expression interactions among a selection of probesets (each representing a single gene or transcript), based on a set of microarray co-expression data stored as an adjacency matrix.</p> <p>Conclusions</p> <p>We present here gViz, a software tool designed to visualize and explore large GraphML networks, combining network theory, biological annotation data, microarray data analysis and advanced graphical features.</p

    Minimising Mortality in Endangered Raptors Due to Power Lines: The Importance of Spatial Aggregation to Optimize the Application of Mitigation Measures

    Get PDF
    Electrocution by power lines is one of the main causes of non-natural mortality in birds of prey. In an area in central Spain, we surveyed 6304 pylons from 333 power lines to determine electrocution rates, environmental and design factors that may influence electrocution and the efficacy of mitigation measures used to minimise electrocution cases. A total of 952 electrocuted raptors, representing 14 different species, were observed. Electrocuted raptors were concentrated in certain areas and the environmental factors associated with increased electrocution events were: greater numbers of prey animals; greater vegetation cover; and shorter distance to roads. The structural elements associated with electrocutions were shorter strings of insulators, one or more phases over the crossarm, cross-shaped design and pylon function. Of the 952 carcasses found, 148 were eagles, including golden eagle (Aquila chrysaetos), Spanish imperial eagle (Aquila adalberti) and Bonelli's eagle (Aquila fasciata). Electrocuted eagles were clustered in smaller areas than other electrocuted raptors. The factors associated with increased eagle electrocution events were: pylons function, shorter strings of insulators, higher slopes surrounding the pylon, and more numerous potential prey animals. Pylons with increased string of insulators had lower raptor electrocution rates than unimproved pylons, although this technique was unsuccessful for eagles. Pylons with cable insulation showed higher electrocution rates than unimproved pylons, both for raptors and eagles, despite this is the most widely used and recommended mitigation measure in several countries. To optimize the application of mitigation measures, our results recommend the substitution of pin-type insulators to suspended ones and elongating the strings of insulators

    Unveiling Novel RecO Distant Orthologues Involved in Homologous Recombination

    Get PDF
    The generation of a RecA filament on single-stranded DNA is a critical step in homologous recombination. Two main pathways leading to the formation of the nucleofilament have been identified in bacteria, based on the protein complexes mediating RecA loading: RecBCD (AddAB) and RecFOR. Many bacterial species seem to lack some of the components involved in these complexes. The current annotation of the Helicobacter pylori genome suggests that this highly diverse bacterial pathogen has a reduced set of recombination mediator proteins. While it is now clear that homologous recombination plays a critical role in generating H. pylori diversity by allowing genomic DNA rearrangements and integration through transformation of exogenous DNA into the chromosome, no complete mediator complex is deduced from the sequence of its genome. Here we show by bioinformatics analysis the presence of a RecO remote orthologue that allowed the identification of a new set of RecO proteins present in all bacterial species where a RecR but not RecO was previously identified. HpRecO shares less than 15% identity with previously characterized homologues. Genetic dissection of recombination pathways shows that this novel RecO and the remote RecB homologue present in H. pylori are functional in repair and in RecA-dependent intrachromosomal recombination, defining two initiation pathways with little overlap. We found, however, that neither RecOR nor RecB contributes to transformation, suggesting the presence of a third, specialized, RecA-dependent pathway responsible for the integration of transforming DNA into the chromosome of this naturally competent bacteria. These results provide insight into the mechanisms that this successful pathogen uses to generate genetic diversity and adapt to changing environments and new hosts

    Group Decisions in Biodiversity Conservation: Implications from Game Theory

    Get PDF
    . This paper shows how game theory may be used to inform group decisions in biodiversity conservation scenarios by modeling conflicts between stakeholders to identify Pareto–inefficient Nash equilibria. These are cases in which each agent pursuing individual self–interest leads to a worse outcome for all, relative to other feasible outcomes. Three case studies from biodiversity conservation contexts showing this feature are modeled to demonstrate how game–theoretical representation can inform group decision-making.–agent fish and coral conservation scenario from the Philippines. In each case there is reason to believe that traditional mechanism–design solutions that appeal to material incentives may be inadequate, and the game–theoretical analysis recommends a resumption of further deliberation between agents and the initiation of trust—and confidence—building measures. that formal mechanism–design solutions may backfire in certain cases. Such scenarios demand a return to group deliberation and the creation of reciprocal relationships of trust

    The Impact of Human Conflict on the Genetics of Mastomys natalensis and Lassa Virus in West Africa

    Get PDF
    Environmental changes have been shown to play an important role in the emergence of new human diseases of zoonotic origin. The contribution of social factors to their spread, especially conflicts followed by mass movement of populations, has not been extensively investigated. Here we reveal the effects of civil war on the phylogeography of a zoonotic emerging infectious disease by concomitantly studying the population structure, evolution and demography of Lassa virus and its natural reservoir, the rodent Mastomys natalensis, in Guinea, West Africa. Analysis of nucleoprotein gene sequences enabled us to reconstruct the evolutionary history of Lassa virus, which appeared 750 to 900 years ago in Nigeria and only recently spread across western Africa (170 years ago). Bayesian demographic inferences revealed that both the host and the virus populations have gone recently through severe genetic bottlenecks. The timing of these events matches civil war-related mass movements of refugees and accompanying environmental degradation. Forest and habitat destruction and human predation of the natural reservoir are likely explanations for the sharp decline observed in the rodent populations, the consequent virus population decline, and the coincident increased incidence of Lassa fever in these regions. Interestingly, we were also able to detect a similar pattern in Nigeria coinciding with the Biafra war. Our findings show that anthropogenic factors may profoundly impact the population genetics of a virus and its reservoir within the context of an emerging infectious disease
    corecore