201 research outputs found
Recommended from our members
Sporormiella as a tool for detecting the presence of large herbivores in the Neotropics
The reliability of using the abundance of Sporormiella spores as a proxy for the presence and abundance of megaherbivores was tested in southern Brazil. Mud-water interface samples from nine lakes, in which cattle-use was categorized as high, medium, or low, were assayed for Sporormiella representation. The sampling design allowed an analysis of both the influence of the number of animals using the shoreline and the distance of the sampling site from the nearest shoreline. Sporormiella was found to be a reliable proxy for the presence of large livestock. The concentration and abundance of spores declined from the edge of the lake toward the center, with the strongest response being in sites with high livestock use. Consistent with prior studies in temperate regions, we find that Sporormiella spores are a useful proxy to study the extinction of Pleistocene megafauna or the arrival of European livestock in Neotropical landscapes
Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis
African trypanosomiasis is a deadly neglected disease caused by the extracellular parasite Trypanosoma brucei. Current therapies are characterized by high drug toxicity and increasing drug resistance mainly associated with loss-of-function mutations in the transporters involved in drug import. The introduction of new antiparasitic drugs into therapeutic use is a slow and expensive process. In contrast, specific targeting of existing drugs could represent a more rapid and cost-effective approach for neglected disease treatment, impacting through reduced systemic toxicity and circumventing resistance acquired through impaired compound uptake. We have generated nanoparticles of chitosan loaded with the trypanocidal drug pentamidine and coated by a single domain nanobody that specifically targets the surface of African trypanosomes. Once loaded into this nanocarrier, pentamidine enters trypanosomes through endocytosis instead of via classical cell surface transporters. The curative dose of pentamidine-loaded nanobody-chitosan nanoparticles was 100-fold lower than pentamidine alone in a murine model of acute African trypanosomiasis. Crucially, this new formulation displayed undiminished in vitro and in vivo activity against a trypanosome cell line resistant to pentamidine as a result of mutations in the surface transporter aquaglyceroporin 2. We conclude that this new drug delivery system increases drug efficacy and has the ability to overcome resistance to some anti-protozoal drugs.JAGS was funded by the European Union, grant FP7-HEALTH-2007-B-2.3.4-1.223048, NANOTRYP and Ministerio de EconomĂa y Competitividad, Spain Plan Nacional de InvestigaciĂłn grant SAF2011- 30528. JLA was funded by Instituto de Salud Carlos III, Spain, grant FIS. 11/02571. HPdK was supported by a grant from the Medical Research Council (84733)
Fleming's penicillin producing streain is not Penicillium chrysogenum but P. rubens
Penicillium chrysogenum is a commonly occurring mould in indoor environments and foods, and has gained much attention for its use in the production of the antibiotic penicillin. Phylogenetic analysis of the most important penicillin producing P. chrysogenum isolates revealed the presence of two highly supported clades, and we show here that these two clades represent two species, P. chrysogenum and P. rubens. These species are phenotypically similar, but extrolite analysis shows that P. chrysogenum produces secalonic acid D and F and/or a metabolite related to lumpidin, while P. rubens does not produce these metabolites. Flemingâs original penicillin producing strain and the full genome sequenced strain of P. chrysogenum are re-identified as P. rubens. Furthermore, the well-known claim that Alexander Fleming misidentified the original penicillin producing strain as P. rubrum is discussed
Effective in vivo and ex vivo gene transfer to intestinal mucosa by VSV-G-pseudotyped lentiviral vectors
<p>Abstract</p> <p>Background</p> <p>Gene transfer to the gastrointestinal (GI) mucosa is a therapeutic strategy which could prove particularly advantageous for treatment of various hereditary and acquired intestinal disorders, including inflammatory bowel disease (IBD), GI infections, and cancer.</p> <p>Methods</p> <p>We evaluated vesicular stomatitis virus glycoprotein envelope (VSV-G)-pseudotyped lentiviral vectors (LV) for efficacy of gene transfer to both murine rectosigmoid colon <it>in vivo </it>and human colon explants <it>ex vivo</it>. LV encoding beta-galactosidase (LV-β-Gal) or firefly-luciferase (LV-fLuc) reporter genes were administered by intrarectal instillation in mice, or applied topically for <it>ex vivo </it>transduction of human colorectal explant tissues from normal individuals. Macroscopic and histological evaluations were performed to assess any tissue damage or inflammation. Transduction efficiency and systemic biodistribution were evaluated by real-time quantitative PCR. LV-fLuc expression was evaluated by <it>ex vivo </it>bioluminescence imaging. LV-β-Gal expression and identity of transduced cell types were examined by histochemical and immunofluorescence staining.</p> <p>Results</p> <p>Imaging studies showed positive fLuc signals in murine distal colon; β-Gal-positive cells were found in both murine and human intestinal tissue. In the murine model, β-Gal-positive epithelial and lamina propria cells were found to express cytokeratin, CD45, and CD4. LV-transduced β-Gal-positive cells were also seen in human colorectal explants, consisting mainly of CD45, CD4, and CD11c-positive cells confined to the LP.</p> <p>Conclusions</p> <p>We have demonstrated the feasibility of LV-mediated gene transfer into colonic mucosa. We also identified differential patterns of mucosal gene transfer dependent on whether murine or human tissue was used. Within the limitations of the study, the LV did not appear to induce mucosal damage and were not distributed beyond the distal colon.</p
Stress-related cardiomyopathies
Stress-related cardiomyopathies can be observed in the four following situations: Takotsubo cardiomyopathy or apical ballooning syndrome; acute left ventricular dysfunction associated with subarachnoid hemorrhage; acute left ventricular dysfunction associated with pheochromocytoma and exogenous catecholamine administration; acute left ventricular dysfunction in the critically ill. Cardiac toxicity was mediated more by catecholamines released directly into the heart via neural connection than by those reaching the heart via the bloodstream. The mechanisms underlying the association between this generalized autonomic storm secondary to a life-threatening stress and myocardial toxicity are widely discussed. Takotsubo cardiomyopathy has been reported all over the world and has been acknowledged by the American Heart Association as a form of reversible cardiomyopathy. Four "Mayo Clinic" diagnostic criteria are required for the diagnosis of Takotsubo cardiomyopathy: 1) transient left ventricular wall motion abnormalities involving the apical and/or midventricular myocardial segments with wall motion abnormalities extending beyond a single epicardial coronary artery distribution; 2) absence of obstructive epicardial coronary artery disease that could be responsible for the observed wall motion abnormality; 3) ECG abnormalities, such as transient ST-segment elevation and/or diffuse T wave inversion associated with a slight troponin elevation; and 4) the lack of proven pheochromocytoma and myocarditis. ECG changes and LV dysfunction occur frequently following subarachnoid hemorrhage and ischemic stroke. This entity, referred as neurocardiogenic stunning, was called neurogenic stress-related cardiomyopathy. Stress-related cardiomyopathy has been reported in patients with pheochromocytoma and in patients receiving intravenous exogenous catecholamine administration. The role of a huge increase in endogenous and/or exogenous catecholamine level in critically ill patients (severe sepsis, post cardiac resuscitation, post tachycardia) to explain the onset of myocardial dysfunction was discussed. Further research is needed to understand this complex interaction between heart and brain and to identify risk factors and therapeutic and preventive strategies
Kin discrimination and possible cryptic species in the social amoeba Polysphondylium violaceum
Abstract
Background
The genetic diversity of many protists is unknown. The differences that result from this diversity can be important in interactions among individuals. The social amoeba Polysphondylium violaceum, which is a member of the Dictyostelia, has a social stage where individual amoebae aggregate together to form a multicellular fruiting body with dead stalk cells and live spores. Individuals can either cooperate with amoebae from the same clone, or sort to form clonal fruiting bodies. In this study we look at genetic diversity in P. violaceum and at how this diversity impacts social behavior.
Results
The phylogeny of the ribosomal DNA sequence (17S to 5.8S region) shows that P. violaceum is made up of at least two groups. Mating compatibility is more common between clones from the same phylogenetic group, though matings between clones from different phylogenetic groups sometimes occurred. P. violaceum clones are more likely to form clonal fruiting bodies when they are mixed with clones from a different group than when they are mixed with a clone of the same group.
Conclusion
Both the phylogenetic and mating analyses suggest the possibility of cryptic species in P. violaceum. The level of divergence found within P. violaceum is comparable to the divergence between sibling species in other dictyostelids. Both major groups A/B and C/D/E/F show kin discrimination, which elevates relatedness within fruiting bodies but not to the level of clonality. The diminished cooperation in mixes between groups suggests that the level of genetic variation between individuals influences the extent of their cooperation
Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects
Over the last decade, pioneering liver-directed gene therapy trials for haemophilia B have achieved sustained clinical improvement after a single systemic injection of adeno-associated virus (AAV) derived vectors encoding the human factor IX cDNA. These trials demonstrate the potential of AAV technology to provide long-lasting clinical benefit in the treatment of monogenic liver disorders. Indeed, with more than ten ongoing or planned clinical trials for haemophilia A and B and dozens of trials planned for other inherited genetic/metabolic liver diseases, clinical translation is expanding rapidly. Gene therapy is likely to become an option for routine care of a subset of severe inherited genetic/metabolic liver diseases in the relatively near term. In this review, we aim to summarise the milestones in the development of gene therapy, present the different vector tools and their clinical applications for liver-directed gene therapy. AAV-derived vectors are emerging as the leading candidates for clinical translation of gene delivery to the liver. Therefore, we focus on clinical applications of AAV vectors in providing the most recent update on clinical outcomes of completed and ongoing gene therapy trials and comment on the current challenges that the field is facing for large-scale clinical translation. There is clearly an urgent need for more efficient therapies in many severe monogenic liver disorders, which will require careful risk-benefit analysis for each indication, especially in paediatrics
Talaromyces atroroseus, a new species efficiently producing industrially relevant red pigments
Some species of Talaromyces secrete large amounts of red pigments. Literature has linked this character to species such as Talaromyces purpurogenus, T. albobiverticillius, T. marneffei, and T. minioluteus often under earlier Penicillium names. Isolates identified as T. purpurogenus have been reported to be interesting industrially and they can produce extracellular enzymes and red pigments, but they can also produce mycotoxins such as rubratoxin A and B and luteoskyrin. Production of mycotoxins limits the use of isolates of a particular species in biotechnology. Talaromyces atroroseus sp. nov., described in this study, produces the azaphilone biosynthetic families mitorubrins and Monascus pigments without any production of mycotoxins. Within the red pigment producing clade, T. atroroseus resolved in a distinct clade separate from all the other species in multigene phylogenies (ITS, β-tubulin and RPB1), which confirm its unique nature. Talaromyces atroroseus resembles T. purpurogenus and T. albobiverticillius in producing red diffusible pigments, but differs from the latter two species by the production of glauconic acid, purpuride and ZG-1494ι and by the dull to dark green, thick walled ellipsoidal conidia produced. The type strain of Talaromyces atroroseus is CBS 133442
- âŚ