5 research outputs found

    1p13.2 deletion displays clinical features overlapping Noonan syndrome, likely related to NRAS gene haploinsufficiency

    Get PDF
    Abstract Deletion-induced hemizygosity may unmask deleterious autosomal recessive variants and be a cause of the phenotypic variability observed in microdeletion syndromes. We performed complete exome sequencing (WES) analysis to examine this possibility in a patient with 1p13.2 microdeletion. Since the patient displayed clinical features suggestive of Noonan Syndrome (NS), we also used WES to rule out the presence of pathogenic variants in any of the genes associated with the different types of NS. We concluded that the clinical findings could be attributed solely to the 1p13.2 haploinsufficiency. Retrospective analysis of other nine reported patients with 1p13.2 microdeletions showed that six of them also presented some characteristics of NS. In all these cases, the deleted segment included the NRAS gene. Gain-of-function mutations of NRAS gene are causally related to NS type 6. Thus, it is conceivable that NRAS haploinsufficiency and gain-of-function mutations may have similar clinical consequences. The same phenomenon has been described for two other genes belonging to the Ras/MAPK pathway: MAP2K2 and SHOC2. In conclusion, we here report genotype-phenotype correlations in patients with chromosome 1p13.2 microdeletions and we propose that NRAS may be a critical gene for the NS characteristics in the patients

    1p13.2 deletion displays clinical features overlapping Noonan syndrome, likely related to NRAS gene haploinsufficiency

    No full text
    Abstract Deletion-induced hemizygosity may unmask deleterious autosomal recessive variants and be a cause of the phenotypic variability observed in microdeletion syndromes. We performed complete exome sequencing (WES) analysis to examine this possibility in a patient with 1p13.2 microdeletion. Since the patient displayed clinical features suggestive of Noonan Syndrome (NS), we also used WES to rule out the presence of pathogenic variants in any of the genes associated with the different types of NS. We concluded that the clinical findings could be attributed solely to the 1p13.2 haploinsufficiency. Retrospective analysis of other nine reported patients with 1p13.2 microdeletions showed that six of them also presented some characteristics of NS. In all these cases, the deleted segment included the NRAS gene. Gain-of-function mutations of NRAS gene are causally related to NS type 6. Thus, it is conceivable that NRAS haploinsufficiency and gain-of-function mutations may have similar clinical consequences. The same phenomenon has been described for two other genes belonging to the Ras/MAPK pathway: MAP2K2 and SHOC2. In conclusion, we here report genotype-phenotype correlations in patients with chromosome 1p13.2 microdeletions and we propose that NRAS may be a critical gene for the NS characteristics in the patients

    Whole-exome identifies germline variants in families with obstructive sleep apnea syndrome

    Get PDF
    Background: Obstructive sleep apnea syndrome (OSAS) (OMIM #107650) is characterized by complete or partial obstruction of the upper airways, resulting in periods of sleep associated apnea. OSAS increases morbidity and mortality risk from cardiovascular and cerebrovascular diseases. While heritability of OSAS is estimated at ∼40%, the precise underlying genes remain elusive. Brazilian families with OSAS that follows as seemingly autosomal dominant inheritance pattern were recruited.Methods: The study included nine individuals from two Brazilian families displaying a seemingly autosomal dominant inheritance pattern of OSAS. Whole exome sequencing of germline DNA were analyzed using Mendel, MD software. Variants selected were analyzed using Varstation® with subsequent analyses that included validation by Sanger sequencing, pathogenic score assessment by ACMG criteria, co-segregation analyses (when possible) allele frequency, tissue expression patterns, pathway analyses, effect on protein folding modeling using Swiss-Model and RaptorX.Results: Two families (six affected patients and three unaffected controls) were analyzed. A comprehensive multistep analysis yielded variants in COX20 (rs946982087) (family A), PTPDC1 (rs61743388) and TMOD4 (rs141507115) (family B) that seemed to be strong candidate genes for being OSAS associated genes in these families.Conclusion: Sequence variants in COX20, PTPDC1 and TMOD4 seemingly are associated with OSAS phenotype in these families. Further studies in more, ethnically diverse families and non-familial OSAS cases are needed to better define the role of these variants as contributors to OSAS phenotype
    corecore