46,654 research outputs found

    Carbon and titanium diboride (TiB2) multilayer coatings.

    Get PDF
    Titanium Diboride, (TiB2) is a metal-based refractory ceramic material that has been investigated in industrial applications ranging from, cutting tools to wear parts and for use in the aerospace industry. The unique properties which make this material so fascinating are, its high hardness, high melting point and its corrosion resistance. TiB2 is prevented from wider mainstream use because of its inherent brittle nature. With a view to overcome this in coating form and with the aim of providing in addition inherent lubricity, in this study 50 layer TiB2/C multilayer stacks have been fabricated, with varying volume fractions of ceramic, whereby the interfaces of the layers limit crack propagation in the TiB2 ceramic. TiB2 has been multilayered with carbon, to make use of the unique and hybrid nature of the bonding in carbon coatings. DC magnetron sputtering with substrate bias was the preferred route for the fabrication of these coatings. AISI tool steel has been used as the substrate material. By varying the amount of TiB2 ceramic from 50% to 95%, the Hardness of the coating is seen to increase from 5 GPa to 17GPa. The Hardness is observed to decrease as a function of increasing carbon content, agreeing with other studies that the carbon layers are not load-bearing. The graphitic nature of the sp2 bond, however, acts as a lubricant layer

    Generalized mathematical models in design optimization

    Get PDF
    The theory of optimality conditions of extremal problems can be extended to problems continuously deformed by an input vector. The connection between the sensitivity, well-posedness, stability and approximation of optimization problems is steadily emerging. The authors believe that the important realization here is that the underlying basis of all such work is still the study of point-to-set maps and of small perturbations, yet what has been identified previously as being just related to solution procedures is now being extended to study modeling itself in its own right. Many important studies related to the theoretical issues of parametric programming and large deformation in nonlinear programming have been reported in the last few years, and the challenge now seems to be in devising effective computational tools for solving these generalized design optimization models

    Conservation of marine Turtles in Andhra Pradesh

    Get PDF
    Different organisations in India are actively engaged with sea turtle conservation programmes. According to them, minor nesting of olive ridleys occurs in Andhra Pradesh. Exporting of marine turtles was not reported in this coast but a section of fishermen known as 'Oda Baljees' eat the turtle meat. The trawlers catch a number of sea turtles, were incidentally caught in nets. Fishing nets should be specially designed to avoid incidental catch of the turtles. The sanctuary boundaries should be extended and inshore use of trawlers and fishing nets during mating and nesting season of Olive ridleys in the sanctuary should be regulated by instructing the port and fisheries departments

    Three-way electrical gating characteristics of metallic Y-junction carbon nanotubes

    Get PDF
    Y-junction based carbon nanotube (CNT) transistors exhibit interesting switching behaviors, and have the structural advantage that the electrical gate for current modulation can be formed by any of the three constituent branches. In this letter, we report on the gating characteristics of metallic Y-CNT morphologies. By measuring the output conductance and transconductance we conclude that the efficiency and gain depend on the branch diameter and is electric field controlled. Based on these principles, we propose a design for a Y-junction based CNT switching device, with tunable electrical properties

    Some experiences with the viscous-inviscid interaction approach

    Get PDF
    Methods for simulating compressible viscous flow using the viscid-inviscid interaction approach are described. The formulations presented range from the more familiar full-potential/boundary-layer interaction schemes to a method for coupling Euler/Navier-Stokes and boundary-layer algorithms. An effort is made to describe the advantages and disadvantages of each formulation. Sample results are presented which illustrate the applicability of the methods

    Triangulation-free Trivialization of 2-loop MHV Amplituhedron

    No full text
    This article introduces a new approach to implement positivity for the 2-loop n-particle MHV amplituhedron, circumventing the conventional triangulation with respect to positive variables of each cell carved out by the sign flips. This approach is universal for all linear positive conditions and hence free of case-by-case triangulation, as an application of the trick of positive infinity first introduced in 1910.14612 for the multi-loop 4-particle amplituhedron. Moreover, the proof of 2-loop n-particle MHV amplituhedron in 1812.01822 is revised, and we explain the nontriviality and difficulty of using conventional triangulation while the results have a simple universal pattern. A further example is presented to tentatively explore its generalization towards handling multiple positive conditions at 3-loop and higher

    Transport in Luttinger Liquids

    Full text link
    We give a brief introduction to Luttinger liquids and to the phenomena of electronic transport or conductance in quantum wires. We explain why the subject of transport in Luttinger liquids is relevant and fascinating and review some important results on tunneling through barriers in a one-dimensional quantum wire and the phenomena of persistent currents in mesoscopic rings. We give a brief description of our own work on transport through doubly-crossed Luttinger liquids and transport in the Schulz-Shastry exactly solvable Luttinger-like model.Comment: Latex file, 15 pages, four eps figure
    corecore