305 research outputs found

    Plasma Nitriding of 90CrMoV8 Tool Steel for the Enhancement of Hardness and Corrosion Resistance

    Get PDF
    The aim of the study is to apply a plasma nitriding process to the 90CrMoV8 steel commonly employed in wood machining, and to determine its efficiency to improve both mechanical and electrochemical properties of the surface. Treatments were performed at a constant N2:H2 gas mixture and by varying the temperature and process duration. The structural and morphological properties of nitrided layers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with EDS microanalyses. Surface hardening and hardness profiles were evaluated by micro hardness measurements. To simulate the woodmachining conditions, electrochemical tests were carried out with an oak wood electrolyte with the purpose of understanding the effects of the nitriding treatment on the corrosion resistance of the tool in operation. X-ray diffraction analyses revealed the presence of both γ′ (Fe4N) and ε (Fe2–3N) nitrides with a predominance of the ε phase. Moreover, α-Fe (110), γ′ and ε diffraction peaks were shifted to lower angles suggesting the development of compressive stresses in the post nitrided steel. As a result, it was shown that nitriding allowed a significant hardening of steel with hardness values higher than 1200 HV. The diffusion layers were always composed of an outer compound layer and a hardened bulk layer which thickness was half of the total diffusion layer one.No white layer was observed. Similarly, no traces of chromium nitrides were detected. The temperature seemed to be a parameter more influent than the process duration on the morphological properties of the nitrided layer, while it had no real influence on their crystallinity. Finally, the optimal nitriding conditions to obtain a thick and hard diffusion layer are 500 °C for 10 h. On the other hand, to verify the effect of these parameters on the corrosion resistance, potentiodynamic polarization tests were carried out in an original “wood juice” electrolyte. After corrosion, surface was then observed at the SEM scale. Electrochemical study indicated that the untreated steel behaved as a passive material. Although the very noble character of steel was somewhat mitigated and the corrosion propensity increased for nitrided steels, the passive-like nature of themodified surfacewas preserved. For the same optimized parameters as those deduced from the mechanical characterization (500 °C, 10 h), surface presented, in addition to a huge surface hardening, a high corrosion resistance.Regional Council of Burgundy and EGID

    In-vitro induction of aerial leaves and of precocious flowering in submerged shoots of Limnophila indica by abscisic acid

    Get PDF
    Nodal explants of submerged shoots of Limnophila indica (L.) Druce were cultured in Nitsch's liquid medium containing abscisic acid (ABA, 10-9-10-6 M). At 10-7 and 10-6 M, ABA induced typical aerial leaves (entire, ovate, opposite-decussately arranged) even under submerged conditions and completely suppressed the development of water leaves (pinnately dissected and whorled). Flowers that invariably arise from aerial shoots were induced precociously by ABA even on submerged nodes

    Record size black marlin, Makaira indica (Cuvier, 1832) landed at Bhimilipatnam, Andhra Pradesh

    Get PDF
    A gigantic black marlin, Makaira indica measuring 4.3 m in length and weighing around 450 kg was landed at Bhimilipatnam beach landing centre and brought to Visakhapatnam Fishing Harbour

    Effect of Swirl on Turbulent Structures in Supersonic Jets

    Get PDF
    Direct Numerical Simulation (DNS) is used to study the mechanism of generation and evolution of turbulence structures in a temporally evolving supersonic swirling round jet and also to examine the resulting acoustic radiations. Fourier spectral expansions are used in the streamwise and azimuthal directions and a 1-D b-spline Galerkin representation is used in the radial direction. Spectral-like accuracy is achieved using this numerical scheme. Direct numerical simulations, using the b-spline spectral method, are carried out starting from mean flow initial conditions which are perturbed by the most unstable linear stability eigenfunctions. It is observed that the initial helical instability waves evolve into helical vortices which eventually breakdown into smaller scales of turbulence. 'Rib' structures similar to those seen in incompressible mixing layer flow of Rogers and Moserl are observed. The jet core breakdown stage exhibits increased acoustic radiations

    A model for multi-attack classification to improve intrusion detection performance using deep learning approaches

    Full text link
    This proposed model introduces novel deep learning methodologies. The objective here is to create a reliable intrusion detection mechanism to help identify malicious attacks. Deep learning based solution framework is developed consisting of three approaches. The first approach is Long-Short Term Memory Recurrent Neural Network (LSTM-RNN) with seven optimizer functions such as adamax, SGD, adagrad, adam, RMSprop, nadam and adadelta. The model is evaluated on NSL-KDD dataset and classified multi attack classification. The model has outperformed with adamax optimizer in terms of accuracy, detection rate and low false alarm rate. The results of LSTM-RNN with adamax optimizer is compared with existing shallow machine and deep learning models in terms of accuracy, detection rate and low false alarm rate. The multi model methodology consisting of Recurrent Neural Network (RNN), Long-Short Term Memory Recurrent Neural Network (LSTM-RNN), and Deep Neural Network (DNN). The multi models are evaluated on bench mark datasets such as KDD99, NSL-KDD, and UNSWNB15 datasets. The models self-learnt the features and classifies the attack classes as multi-attack classification. The models RNN, and LSTM-RNN provide considerable performance compared to other existing methods on KDD99 and NSL-KDD datase

    Large Scale Turbulent Structures in Supersonic Jets

    Get PDF
    Jet noise is a major concern in the design of commercial aircraft. Studies by various researchers suggest that aerodynamic noise is a major contributor to jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly growing or decaying vortices. The objective of this research was to simulate a compressible round jet to study the non-linear evolution of vortices and the resulting acoustic radiations. In particular, to understand the effect of turbulence structure on the noise. An ideal technique to study this problem is Direct Numerical Simulations(DNS), because it provides precise control on the initial and boundary conditions that lead to the turbulent structures studied. It also provides complete 3-dimensional time dependent data. Since the dynamics of a temporally evolving jet are not greatly different from those, of a spatially evolving jet, a temporal jet problem was solved, using periodicity ill the direction of the jet axis. This enables the application of Fourier spectral methods in the streamwise direction. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. The DNS jet simulation helps us understand the various turbulent scales and mechanisms of turbulence generation in the evolution of a compressible round jet. These accurate flow solutions will be used in future research to estimate near-field acoustic radiation by computing the total outward flux across a surface and determine how it is related to the evolution of the turbulent solutions. Furthermore, these simulations allow us to investigate the sensitivity of acoustic radiations to inlet/boundary conditions, with possible application to active noise suppression. In addition, the data generated can be used to compute various turbulence quantities such as mean velocities, turbulent stresses, etc. which will aid in turbulence modeling. This report will be presented in two chapters. The first chapter describes some work on the linear stability of a supersonic round jet and the implications of this for the jet noise problem. The second chapter is an extensive discussion of numerical work using the spectral method which we use to solve the compressible Navier-Stokes equations to study turbulent jet flows. The method uses Fourier expansions in the azimuthal and streamwise direction and a 1-D B-spline basis representation in the radial direction. The B-spline basis is locally supported and this ensures block diagonal matrix equations which can be solved in O(N) steps. This is a modification of a boundary layer code developed by Robert Moser. A very accurate highly resolved Direct Numerical Simulation (DNS) of a turbulent jet flow is produced

    Effect of Swirl on Turbulent Structures in Supersonic Jets

    Get PDF
    Direct numerical simulation (DNS) is used to study the mechanism of generation and evolution of turbulence structures in a temporally evolving supersonic swirling round jet and also to examine the resulting acoustic radiations. Fourier spectral expansions are used in the streamwise and azimuthal directions and a 1-D b-spline Galerkin representation is used in the radial direction. Spectral-like accuracy is achieved using this numerical scheme. Direct numerical simulations, using the b-spline spectral method, are carried out starting from mean flow initial conditions which are perturbed by the most unstable linear stability eigenfunctions. It is observed that the initial.helical instability waves evolve into helical vortices which eventually breakdown into smaller scales of turbulence. 'Rib' structures similar to those seen in incompressible mixing layer flow of Rogers and Moser are observed. The jet core breakdown stage exhibits increased acoustic radiations

    Aeroacoustics of Turbulent High-Speed Jets

    Get PDF
    Aeroacoustic noise generation in a supersonic round jet is studied to understand in particular the effect of turbulence structure on the noise without numerically compromising the turbulence itself. This means that direct numerical simulations (DNS's) are needed. In order to use DNS at high enough Reynolds numbers to get sufficient turbulence structure we have decided to solve the temporal jet problem, using periodicity in the direction of the jet axis. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. Therefore in order to answer some questions about the turbulence we will partially compromise the overall structure of the jet. The first section of chapter 1 describes some work on the linear stability of a supersonic round jet and the implications of this for the jet noise problem. In the second section we present preliminary work done using a TVD numerical scheme on a CM5. This work is only two-dimensional (plane) but shows very interesting results, including weak shock waves. However this is a nonviscous computation and the method resolves the shocks by adding extra numerical dissipation where the gradients are large. One wonders whether the extra dissipation would influence small turbulent structures like small intense vortices. The second chapter is an extensive discussion of preliminary numerical work using the spectral method to solve the compressible Navier-Stokes equations to study turbulent jet flows. The method uses Fourier expansions in the azimuthal and streamwise direction and a 1-D B-spline basis representation in the radial direction. The B-spline basis is locally supported and this ensures block diagonal matrix equations which are solved in O(N) steps. A very accurate highly resolved DNS of a turbulent jet flow is expected

    Age, growth and population structure of the yellowfin tuna Thunnus albacares (Bonnaterre, 1788) exploited along the east coast of India

    Get PDF
    Lengths measurements of 6,758 yellowfin tuna (Thunnus albacares), landed by hook and line operators off eastern Indian coast were taken (20–185 cm FL) from 2003 to 2009. Age and growth were estimated using length based methods. The von Bertalanffy growth parameters estimated were L∝ = 197.42 cm, annual K= 0.30 and t0= -0.1157. Mortality estimates were M= 0.48 and Z= 0.71 and F= 0.23 with the exploitation ratio E= 0.32. Growth was rapid during the initial years when the annual growth increment was as high as 36.6 cm during the first year then which to as low as 3.3 cm in the tenth year. The fish attained a fork length of 56.2 cm at the end of one year. Size at maturity (87.5 cm) corresponded to an age of 1.7 years and the oldest individual in the sample was 9+ years (186 cm). The annual mean lengths varied from 80.6 cm to 115.3 cm with an average mean length of 101.9 cm. The fishery comprised of mostly adults with 64% comprising of fishes larger than size at first maturity
    corecore