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Abstract

Direct numerical simulation (DNS) is used to study the mechanism of generation and

evolution of turbulence structures in a temporally evolving supersonic swirling round jet

and also to examine the resulting acoustic radiations. Fourier spectral expansions are used

in the streamwise and azimuthal directions and a 1-D b-spline Galerkin representation

is used in the radial direction. Spectral-like accuracy is achieved using this numerical

scheme. Direct numerical simulations, using the b-spline spectral method, are carried

out starting from mean flow initial conditions which are perturbed by the most unstable

linear stability eigenfunctions. It is observed that the initial helical instability waves evolve

into helical vortices which eventually breakdown into smaller scales of turbulence. 'Rib'

structures similar to those seen in incompressible mixing layer flow of Rogers and Moser 1

are observed. The jet core breakdown stage exhibits increased acoustic radiations.
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I. Introduction

The object of this work is to obtain highly accurate solutions of turbulent round jets.

The solutions obtained help understand the various turbulent scales and mechanisms of

turbulence generation in the evolution of a compressible round jet. These accurate flow

solutions will be used to estimate acoustic radiation in the near-field region. There has

been some work 2-4 in the field of compressible round jets at supersonic Mach numbers

but none, to the authors' knowledge, in transition to turbulence in supersonic jets.

Over the past few decades Direct Numerical Simulations (DNS) have become a very

powerful tool to obtain highly accurate flow simulations 1,5-9 In these simulations no

models are used, the flow equations are solved using highly accurate numerical schemes.

Hybrid spectral methods form a class of such highly accurate numerical methods which

have been successfully used by the researchers mentioned above and also by Spalart et al

10. For the present work a hybrid b-spline spectral method developed by Moser et al 5 is

used.

In order to use DNS at high enough Reynolds number to get sufficient turbulent

structures the temporal jet problem is studied using periodicity in the axial direction.

This allows for the application of spectral expansion in the axial direction. Physically this

means that the turbulent structures in the jet are repeated in successive downstream cells

and grow in time instead of being gradually modified downstream into a jet plume. There

is an approximate correlation between the growth of structures with time in the temporal

jet and the growth of structures in the spatially growing jet as one follows the structures

downstream. Spectral accuracy helps capture smaller turbulent scales at the expense of

some compromise to the overall jet structure.

The compressible round jet is simulated by using Fourier expansions in the azimuthal

and streamwise direction and a 1-D b-spline basis representation in the radial direction.

The simulation starts with the mean flow, upon which the linear stability eigenfunctions are

superimposed, and develops temporally. Various stages of growth, evolution and eventual

breakdown of vortical structures are noted. Preliminary acoustic estimates are presented.

These give a reasonable picture of the source of most of the turbulent noise and a fair
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picture of the directivity of these acoustic waves.

II. Governing Equations

The compressible Navier-Stokes equations written in cylindrical coordinates in non-

dimensional form are,
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and a p, mk= p Uk, Re = _u ' Pr = ,_ , rj is the jet radius, Re, Pr are the

Reynolds number and Prandtl number, Cp is the specific heat at constant pressure, and

is the viscous dissipation given by
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III. Linear Stability Analysis

Inviscid linear stability analysis is performed for jets with varying degrees of swirl for

a Mach 2 jet. In all the cases studied here it is found that the Kelvin-Helmholtz instability
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dominates. Helical waves of the form exp(-kzz + mO) where kz and m are axial and

azimuthal wavenumbers, are found to be most unstable with m _ 0. This is similar to

the compressible shear layer results of Sandham and Reynolds s,9, who found that waves

oblique to the flow direction were most unstable. The main results of the analysis are shown

in fig 1 which shows growth rate versus wavenumber for a series of swirl ratios. It is seen

that swirl increases the growth rates of some higher azimuthal disturbances depending on

their sense of rotation. From the figure it is also evident that positive swirl while increasing

growth rates also shifts the most unstable waves to higher m and kz, whereas a negative

swirl shifts the most unstable modes to lower wavenumbers. This is an interesting result

since the addition of positive swirl would encourage shorter waves to grow faster and on

the other hand a negative swirl tends to aid the growth of longer waves.

The results obtained from this analysis are used to compute the most unstable eigen-

functions, which are used to perturb the mean flow for non-linear DNS calculations. For

details on the stability analysis refer to Rao 11.

IV. Numerical Formulation

The flow variables are expanded using Fourier series in the two periodic directions,

yiz. the azimuthal (0) and the axial (z) directions. In the non-periodic or radial direction

(r) 1-dimensional b-splines are used as interpolating functions.

B-splines 12 of order n are piecewise polynomials of degree n having n - 1 continuous

derivatives. The n th derivative has a jump at knot points within the interval. Since they

have a high degree of continuity derivative quantities (like vorticity) can be smoothly and

accurately represented. B-splines have local support and hence boundary conditions and

any other conditions which are localized can be easily implemented. Also the local support

leads to sparse block diagonal matrices which can be efficiently stored and solved.

The continuity equation, for example, can be written in Galerkin form for any ko and

k_ as



0 _ ( _bibj (rbk)'bl rd r--_ oi E bi bl rdr = E oiaj turk r
l j,k,z

In 0 fR rdr)
0 bi bj bk bt rdr + -- bi bj bk bl

+ --_mo,, r Oz mzk

(4)

where,

= Z k(z,O,t) bk(r), mo = Zmo (z,e,t)
k k

= F_.mr (z,O,t)b (r) , mz =
k k

The Fourier terms are included in the coefficients of the variables, so ok(z,O,t) =

ak(t) _'_ko _-_kz exp(ikoO + ikzz) and so on.

The derivatives in the 0 and z directions are computed by taking a Fast Fourier

Transform (FFT) into wave space and multiplying by the appropriate wave numbers (ko

and k_), and then an inverse FFT is applied to bring it back to physical space. The

momentum and energy equations can be written in a similar manner.

Writing the flow equations as discussed above results in a linear system of coupled

equations to solve simultaneously at each time step. Since b-splines of order n have local

support on n + 1 knot (node) intervals this results in a 2n + 1 block banded matrix system,

M f = R, (5)

where M is the resulting mass matrix, f is the column vector of nodal values to be solved

for, and R is a column matrix resulting from the RHS of the governing equations. A low

storage 3 rd order Runge-Kutta scheme designed by Wray 13 is used for time integration.

V. Regularity Requirements and Modal Reduction

In the cylindrical coordinate system the origin (r = 0) is a source of concern since

some of the functions do not remain analytic. From a mathematical point of view the

flow variables should be single valued and finite. To enforce this the polynomial expansion

functions must satisfy some regularity requirements 14. The z-component of the velocity

should be represented as,
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Uz(r; re, k) = a(m,k) rImlP_(r2; rn,k) ei m0ei kz
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(6)

where Pz(r2; m, k) is a polynomial in r 2. Scalars and z-components of all vectors should

be represented in a similar manner. The 0 and r-components of the vectors are dependent

on each other and should be represented as,

for m _-_ 0
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Another problem arising from a cylindrical mesh is that the aspect ratio of the cells

near the origin gets very large. The number of azimuthal modes near the origin have to be

reduced to maintain a good CFL number. This is referred to as mode suppression. The

number of azimuthal modes are effectively reduced to 2 near the origin and are increased

successively until the outer boundary has all the azimuthal modes. This reduces the

accuracy near the axis but increases the allowable time-step, dt, by a significant amount.

Both of these conditions give rise to a set of constraint equations which are imple-

mented by replacing some rows in the mass matrix and suitably modifying the RHS vector

R 7,11

VI. Boundary conditions

In solving a temporally evolving jet the inflow-outflow boundaries are made periodic

(see fig 2). This also enables us to use a spectral expansion in the axial direction and

also takes care of the inflow-outflow boundary conditions. The only boundaries of concern

are the radial numerical boundaries where a first order non-reflecting boundary condition



for outflow hasbeen used. This condition prevents incoming wavesfrom infinity by using

one-dimensionalRiemann invariants. This takesthe form,

0 I 0 I Coo I

- poo oo - (s)

where R is the radius of the outer boundary, and the primed quantities represent perturba-

tions from the co quantities, which represent the free stream quantities. The term on the

right hand side is a correction for a cylindrical boundary. Similar conditions are obtained

by Engquist and Majda 15,16 and Giles 17. This boundary condition works well for directly

incident waves. For the present case the above conditions serve the purpose since the jet

flow has nearly cylindrical wavefronts incident on the boundary. In addition the outgoing

wave amplitudes have been mitigated by numerical dissipation due to coarsening of the

mesh gradually as the outer boundary is approached.

VII. The DNS of the Swirling Jet

VII a) Initial Conditions and Computational Domain SetUp

The simulation is started with a base flow having a half-Gaussian (see fig 3.) axial

velocity profile with a maximum centerline velocity of Mach 2 and a tangential velocity

such that there is solid body rotation in the jet core and maximum swirl in the jet shear

layer diminishing to zero outside of the jet shear layer. This is achieved simply by setting

Uo = Sr(lz, where S is a factor used to control the amount of swirl (also called swirl ratio).

For this simulation S is set to 0.4. The radial mean flow velocity is set to zero. Uniform

mean temperature is assumed across the jet. The mean pressure t5 depends on the radial

coordinate r, and hence so does the mean density ft. When the mean flow parameters are

used to satisfy the Euler equations a relation for 15 is obtained ;

-- (9)
dr r

From the equation of state (non-dimensionalized)
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/5 = --_-. (10)

Using the above equation in equation 10 it can be shown that

"yOa2 "

P(r) = Pooe- f_ -;-_-ar (11)

where T is a constant set to 1 U0 is a known function of r, and Poo = ! from non-

dimensionalization. Once/5(r) is computed,/5 can be computed from equation 11.

The density is non-dimensionalized with poo, and the temperature by Too. Pressure is

non-dimensionalized by 2pooaoo, where aoo is speed of sound at infinity. The dimensionless

mean flow temperature and hence the speed of sound are set to 1. The same mean flow

conditions are used for the linear stability analysis in section III. The mean flow quantities

o',mo, rhz, [=' are perturbed by the most unstable linear stability eigenfunctions, computed

i I and p_), giving initial conditions :in section III (or', u_, %, uz,

1 I
0"--- ---Jr-O

mo = ,% + (= + p'Oo+
I

mr = m_ (= flu'r) (12)

p =/5+pl

The maximum amplitude of these perturbations is taken to be 0.05.

Though the most unstable eigenvalues for a S = 0.4 occur for m = 5 at k_ = 5.5 (fig

2.), m = 4 and kz = 3 eigenfunctions are used in order to keep the computation similar to

the non-swirling jet case simulated by Rao zz. The domain size is chosen to accommodate

one wavelength of the m = 4 and kz = 3 disturbance wave in both the 0 and z directions,

so a quarter domain is simulated in the 0 direction and the computational domain length

in the axial direction is Lz - 2_r This greatly reduces the size of the simulation and
-- kz °

allows better resolution for smaller scales. In this case however, the most unstable waves

have higher frequencies or lower wavelength in the 0 and z directions. Hence due to the

9



fluid physics,more unstable mode waveswith higher frequenciescan be generated,and if

they grow faster than the m = 4 and kz = 3 waves, the domain can exhibit more than

one wavelength of these shorter wavelength waves. There is thus a possibility for multiple

structures with this shorter wavelength to evolve, and thus the possibility of capturing

vortex pairing dynamics if two vortex structures develop in one domain length. This is

indeed the case as will be seen below in section VIIb. The outer domain is chosen at 4 jet

radii (R = 4rj). This is considered far enough not to encounter any mass flow across the

boundary. The non-reflecting boundary conditions are applied at this boundary.

The Reynolds number (Re) for the simulation based on jet radius (rj) and speed of

sound in the core (5) is kept the same at 2500. The simulation is started from a coarse mesh

which is refined as the simulation progresses. The resolution requirements are controlled

by monitoring the energy spectra and also by visual inspection of the flow field. It is noted

that maximum resolution is needed during transition. The final maximum resolution used

is 128 • 167 • 144 (Ne * Ny * Nz). 128 Fourier modes represent a quadrant in the azimuthal

direction, 167 b-splines in the radial direction from 0 - R, and 144 Fourier modes in the

axial direction over Lz are used. The mesh is non-uniform in the radial direction with

more clustering in the jet shear layer.

VII b) The DNS Results

The evolution of the swirling jet is shown in figures 4a and 4b as a reconstruction of the

temporal jet, constructed by placing temporal sections from different times adjacent to each

other. The convective velocity of the large scale structures is used for the reconstruction.

The density plot (fig. 4a) clearly outlines the different stages of evolution. The initial

frames show a uniformly varying density from the axis to the shear layer, until t = 5.2

which marks the commencement of core breakdown. Also clearly visible is the edge of the

jet shear layer. The last two frames show flow without much of a core. Some Mach waves

can be seen in the last few frames after core breakdown (seen more clearly in a similar

pressure plot shown below in fig 14).

The vorticity magnitude plot (fig. 4b) illustrates an initially sharp shear layer with
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helical instability wavesdeveloping into helical vortices. There is distinct formation of

roller at time t -- 2.6. Since the domain size is such that it supports a wavelength of the

disturbance smaller than its length (explainedabovein VIIa) there is the formation of two

rollers (also seenin the r - _ cross-section plot fig. 9a). These rollers eventually pair and

this pairing mechanism can be clearly seen at t -- 3.9. The pairing is complete by t = 5.2

leaving only one large scale structure, and by t = 6.5 this structure rolls up into a large

roller. At t = 7.8 the roller has broken into smaller more intense vortices.

The energy spectrum is plotted versus the axial (fig. 5a) and the azimuthal (fig. 5b)

wave numbers at different times. The solid line shown is the k -5/3 spectrum. A broad

energy spectrum is observed even though the initial conditions had energy only in the kz

= 1 and ke = 1 modes. This indicates that the energy has been cascaded to other scales

as the jet developed.

Figure 6, shows variation of mean axial velocity with radius over time. This is used

to monitor the growth in the mean thickness of the shear layer at different times of the

simulation. The shear layer which was initially about 0.2rj reaches 2.0rj at core collapse.

Since only a m = 4 mode is used to perturb the mean flow, the ensuing flow will have

a quarter domain symmetry in the azimuthal direction. Thus flow is computed only in

one quadrant. The other quadrants would have identical flow fields. Hence we plot only

one quadrant. The instability waves are tracked from initial time through a sequence of

vorticity iso-surface plots with a few cross-sectional plots for emphasis.

At t -- 0 (fig 7), the iso-surface plots show a flat vortex sheet with a strong helical

wave instability on it. By t -- 1.3 (fig 8) the development of multiple helical disturbances

is clearly visible. This indicates the start of the evolution of the shorter wavelength dis-

turbances. This is when the faster growing instability waves (higher frequency) begin to

dominate the flow. The higher vorticity (w = 12) is tube-like and sheathed between the

lower vorticity (w = 6) sheets. These waves become more pronounced at t = 2.6 (fig 9b).

There is a distinct roll-up of the helical instability waves into helical vortex tubes. Two

vortex rollers both in the r - _ (fig 9a) and r - z cross-sections ( see fig 4b) are clearly seen.

This allows the phenomenon of vortex-pairing. The vortex sheets in the region between the
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two rollers (this has been called the braid region by someresearchers)exhibit secondary

instabilities. Pairing can be seenbetweenthe two helical vortex rollers at t = 3.9 (fig 10a

10b and 4b). Theserollers begin merging into onelarge scalestructure. The vorticity is

still concentratedin long vortex-sheetlike structures. Intensevortex tubes or 'ribs', which

areoriented almost perpendicular(locally) to and wrap around the primary helical vortex,

can initiate in the braid region betweenthe two rollers. (Rogersand Moser6, noted very

intenseround 'ribs' or streamwisevortices wrapping around large scalespanwiserollers in

their incompressiblemixing layer flow.) These'ribs' developcircular cross-sectionsasthey

intensify.

By t = 5.2 (fig 1 la-llc) the pairing mechanism is complete and the large scale structure

has started breaking down into smaller more intense vortical structures. This is a rapid

transition region and is characterized by large acoustic radiations, as will be shown in the

next section. The r - 0 cross-section shows formation of spiral S-shaped vortex cores along

the outer edge of the shear layer. These intense vortex cores roll the flat vortex sheets

around them. These are 'rib' cross-section signatures. The 'ribs' are clearly visible in the

iso-surface plots (w = 6) as the two large vortex tubes wrapping around the primary vortex

tube in the opposite sense of the helix t. The primary helical vortex is seen more clearly

in the w = 12 plot (fig llc).

No more vortex sheet like structures are visible at t = 6.5 (fig 12a-c). From fig. 4b,

it is noted that this was the time of roll-up into a large structure. Most of the vortical

structures are large, tubular and oriented randomly. The ribs are still persistent, especially

the one in the center of the plot, it can be seen at all three vorticity levels, indicating that

the 'ribs' have become more intense after getting stretched. At t = 7.8 (fig. 13a-d), large

scale structures are no longer seen; most of the vorticity is concentrated in smaller more

intense tubes which are randomly oriented.

VIII. Acoustic Estimates

Fig 14 shows the various stages of jet evolution in a reconstruction similar to fig 4.

t The primary vortex goes from top left to bottom right of the figure and loops around

the jet core such that the axis of the helix is in the streamwise direction
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From this pressureplot it canbe seenthat the uniformly varying jet corebegins to collapse

at t = 5.2, after the vortex pairing hasoccurred. The pairing mechanismseemsto induce

early transition. The corebreakdownis seento be the primary sourceof noise. In the next

coupleof frames Mach waves,which originate at corebreakdown,can be seenpropagating

outwards.

Plotted in fig 15 is the total acoustic energy flux per unit area (p' • ur) radiated

through a quarter domain of the cylindrical shell at r = 3. This gives a rough estimate of

when the acoustic energy is radiated. From this plot one sees a sharp rise in the energy

flux near t = 2. This is when the initial disturbances in the shear layer propagate to

r = 3. Also around t = 3 marks the growth and non-linear interactions of instability

waves. The energy flux increases with time indicating that acoustic emissions increase as

the helical waves grow in amplitude and interact with each other. At t = 7.2 a peak is

clearly noticed, this corresponds to the fluid physics in the core around t = 4.2 - 5. So as

expected the vortex pairing and the rapid breakdown of the large scale structures at core

collapse cause a rise in acoustic radiations. This is similar to results seen by Mitchell et al

is, and is consistent with the premise that rapidly varying vortical structures cause most

of the noise. The ensuing small scale turbulence should give higher frequency noise. At

core breakdown Mach wave radiations cause most of the acoustic radiation, and this will

be captured by the pressure energy flux plot around t -- 8.2.

The fluctuation of p over time at a point on the r = 3 shell is plotted in fig 16. It can

be seen that the frequency of the oscillations increases over time as the flow becomes more

turbulent.

IX. Conclusions

The instability waves are tracked in time as they evolve. Large scale vortex pairing

is observed which appears to hasten transition to turbulence. Mach waves are observed

around the time of core collapse. The energy spectra indicate that the energy which was

initially in one mode has cascaded to higher wave numbers or smaller structures. 'Rib'

structures similar to those seen in incompressible mixing layer flow of Rogers and Moser

13



1
are observed. This is interesting since the flow initial and boundary conditions and the

governing flow equations of these flows is quite different from the mixing layer flow.

The acoustic emissions for the jet flow are estimated. It is seen that the core collapse

of the jet causes increased acoustic emissions. The time series plot of the pressure pertur-

bation at r -- 3 shows most of the fluctuations to be low frequency waves. Slightly higher

frequency is seen as turbulence develops; smaller vortices give higher frequency emissions.
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Fig. 1 : Effect of swirl on linear stability growth rates

Fig. 2 : Schematicof the computational domain

Fig. 3 : half-Gaussianvelocity profile

Fig. 4a: The reconstructed swirling jet: density

Fig. 4b : The reconstructedswirling jet : vorticity magnitude

Fig. 5a : Plots showing the energyspectrum vs axial wavenumber

Fig. 5b : Plots showing the energyspectrum vs azimuthal wavenumber

Fig. 6 : Plot showingthe variation of axial velocity over time

Fig. 7 : Total vorticity iso-surfaceplot at time t -- 0

Fig. 8 : Total vorticity iso-surfaceplot at time t = 1.3

Fig. 9a : Total vorticity r - _ plot at time t = 2.6

Fig. 9b : Total vorticity iso-surface plot at time t = 2.6

Fig. 10a : Total vorticity r - t? plot at time t = 3.9

Fig. 10b: Total vorticity

Fig. 11a : Total vorticity

Fig. llb : Total vorticity

Fig. llc: Total vorticity

Fig. 12a: Total vorticity

Fig. 12b: Total vorticity

Fig. 12c : Total vorticity

Fig. 13a : Total vorticity

Fig. 13b : Total vorticity

Fig. 13c: Total vorticity

iso-surface plot at time t = 3.9

r - _ plot at time t -- 5.2

(w = 6) iso-surface plot at time t = 5.2

(w = 12) iso-surface plot at time t = 5.2

(w = 6) iso-surface plot at time t -- 6.5

(w = 12) iso-surface plot at time t = 6.5

(w = 16.5) iso-surface plot at time t = 6.5

(w -- 6) iso-surface plot at time t = 7.8

(w = 12) iso-surface plot at time t = 7.8

(w -- 16.5) iso-surface plot at time t = 7.8

Fig. 13d : Total vorticity (w = 20) iso-surface plot at time t = 7.8

Fig. 14 : The evolution of pressure over time

Fig. 15 : The acoustic energy radiated over time for the swirling jet

Fig. 16 : Pressure variation with time for the swirling jet
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non-roflocting boundary
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Fig. 3
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The Swlding Jet ( density )
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Uz vs radius
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Total vortlclty magnitude ( t = 2.6)
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Total vortlclty magnitude ( t --- 5.2 )
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