795 research outputs found

    On the Importance of MC&A to Nuclear Security

    Get PDF
    Over the past fifty years, the threats posed by nuclear material and nuclear weapons have changed. These changes demand a new response. During the Cold War, the primary concern was that more States might establish programs to develop nuclear weapons. This is still a possibility, however, the concern of State proliferation of nuclear weapons has been joined by a new concern, namely the concern that a non-State actor might acquire a nuclear weapon or misuse nuclear or other radioactive material to create a disruptive nuclear security event. Because the threat has changed, international and national approaches to nuclear security need to change. Measures should be adopted world-wide that respond to the potential for a non-State actor to acquire and misuse nuclear material. (The primary subject of this paper is containing nuclear material threats. However, the same concepts that apply to nuclear material apply to other radioactive material, and from this point forward “nuclear material” could be interchanged with “nuclear and other radioactive material.”) The first step in preventing a non-State actor from acquiring nuclear material is for States to require nuclear facilities (i.e. organizations that possess nuclear material) to establish programs to maintain control over and account for the nuclear material that they possess. Most States already require a program of accounting for and control of nuclear material as part of their international nuclear safeguards programs. Enhancing existing nuclear material control and accounting (MC&A) programs could help to address the evolved threat to nuclear security, in addition to improving safeguards. This paper addresses the need to enhance existing MC&A programs to accommodate the needs of nuclear security. If you know what nuclear material you have, if you know where it is, and if you would recognize if it had gone missing, then you have taken the first step toward protecting people and the environment from misuse of it—one of the primary goals of nuclear security

    Representational task formats and problem solving strategies in kinematics and work

    Get PDF
    Previous studies have reported that students employed different problem solving approaches when presented with the same task structured with different representations. In this study, we explored and compared students’ strategies as they attempted tasks from two topical areas, kinematics and work. Our participants were 19 engineering students taking a calculus-based physics course. The tasks were presented in linguistic, graphical, and symbolic forms and requested either a qualitative solution or a value. The analysis was both qualitative and quantitative in nature focusing principally on the characteristics of the strategies employed as well as the underlying reasoning for their applications. A comparison was also made for the same student’s approach with the same kind of representation across the two topics. Additionally, the participants’ overall strategies across the different tasks, in each topic, were considered. On the whole, we found that the students prefer manipulating equations irrespective of the representational format of the task. They rarely recognized the applicability of a ‘‘qualitative’’ approach to solve the problem although they were aware of the concepts involved. Even when the students included visual representations in their solutions, they seldom used these representations in conjunction with the mathematical part of the problem. Additionally, the students were not consistent in their approach for interpreting and solving problems with the same kind of representation across the two topical areas. The representational format, level of prior knowledge, and familiarity with a topic appeared to influence their strategies, their written responses, and their ability to recognize qualitative ways to attempt a problem. The nature of the solution does not seem to impact the strategies employed to handle the problem

    Characteristics of aerosols at traffic junctions in Pune city

    Get PDF
    Vehicular emissions are one of the potential sources of air pollution in the urban regions. Pune, one of the rapidly growing cities of India, faces the severe threat from this problem. Observations of total suspended particulates and Aitken nuclei were conducted at 4 traffic junctions in Pune city during summer (May 2000) and winter (Jan-Feb. 2001). Concentrations of TSP crossed the CPCB limit, recommended for commercial zone, at all the traffic junctions and also the number density of Aitken nuclei was very high. However, aerosols were alkaline in nature, in spite of high concentrations of SO4 and NO3, mainly due to the neutralizing effect of Ca, NH4, Na, Mg and K

    Fast Transition between High-soft and Low-soft States in GRS 1915+105: Evidence for a Critically Viscous Accretion Flow

    Get PDF
    We present the results of a detailed analysis of RXTE observations of class ω\omega which show an unusual state transition between high-soft and low-soft states in the microquasar GRS 1915+105. Out of about 600 pointed RXTE observations, the source was found to exhibit such state transition only on 16 occasions. An examination of the RXTE/ASM data in conjunction with the pointed observations reveals that these events appeared as a series of quasi-regular dips in two stretches of long duration (about 20 days during each occasions) when hard X-ray and radio flux were very low. The X-ray light curve and color-color diagram of the source during these observations are found to be different from any reported so far. The duration of these dips is found to be of the order of a few tens of seconds with a repetition time of a few hundred seconds. The transition between these dips and non-dips which differ in intensity by a factor of ~ 3.5, is observed to be very fast (~ a few seconds). It is observed that the low-frequency narrow QPOs are absent in the power density spectrum (PDS) of the dip and non-dip regions of class ω\omega and the PDS is a power law in 0.1 - 10 Hz frequency range. There is a remarkable similarity in the spectral and timing properties of the source during the dip and non-dip regions in these set of observations. These properties of the source are distinctly different from those seen in the observations of other classes. This indicates that the basic accretion disk structure during both dip and non-dip regions of class ω\omega is similar, but differ only in intensity. To explain these observations, we invoke a model in which the viscosity is very close to critical viscosity and the shock wave is weak or absent.Comment: Replaced with correct figures, Jour. of Astrophysics and Astronomy (accepted

    Effect of Fe on the Martensitic Transition, Magnetic and Magnetocaloric Properties in Ni-Mn-In Melt-spun Ribbons

    Get PDF
    The effect of Fe on the martensitic transitions, magnetic and inverse magnetocaloric effect in Ni47Mn40-xFexIn13 ribbons (x = 1, 2, 3 and 5) has been investigated. All the ribbon compositions under study have shown the presence of austenite phase at room temperature. The variation of martensitic transition with the increase in Fe-content is non-monotonic. The thermal hysteresis of the martensitic transition increased with the increase in Fe-content. The martensitic transitions shifted to lower temperatures in the presence of high magnetic fields. A maximum magnetic entropy change (∆SM) of 50 Jkg-1K-1 has been achieved in the Ni47Mn38Fe2In13 (x = 1) ribbon at 282 K for an applied field of 5 T

    Effect of VAM fungi and bacterial biofertilizers on mulberry leaf quality and silkworm cocoon characters under semiarid conditions

    Get PDF
    The influence of VAM fungi and bacterial biofertilizer (BBF) with 50% reduction in the recommended dose of (N and P) chemical fertilizers on leaf quality traits of mulberry variety (S-13) and its impact on silkworm (PM ? NB4D2) growth and cocoon characters were studied under semi-arid conditions. Four different treatments were imposed i.e., T1: Control (only 100% NPK); T2: VAM (50% cut in P); T3: BBF (50% cut in N) and T4: BBF and VAM (50% cut in N and P). The results revealed that reduction (50%) in the dose of chemical fertilizers in T2, T3 and T4 did not affected the leaf quality traits or cocoon parameters, this may be due to the effect of microbial inoculants in these treatments, which had efficiently regulated the normal growth, metabolism and physiological activity in plants. Among the three-biofertilizer treatments, leaf quality, silkworm growth and cocoon parameters were found improved in T4 and was on par with T1 control. The dual inoculation (T4) proved economical and beneficial with regard to saving of 50 % cost of chemical fertilizers and improvement in soil fertility, leaf quality and cocoon parameters, thus this technology can be recommended to sericulture

    Modification of the ground state in Sm-Sr manganites by oxygen isotope substitution

    Full text link
    The effect of 16^{16}O \to 18^{18}O isotope substitution on electrical resistivity and magnetic susceptibility of Sm1x_{1-x}Srx_xMnO3_3 manganites is analyzed. It is shown that the oxygen isotope substitution drastically affects the phase diagram at the crossover region between the ferromagnetic metal state and that of antiferromagnetic insulator (0.4 <x<< x < 0.6), and induces the metal-insulator transition at for xx = 0.475 and 0.5. The nature of antiferromagnetic insulator phase is discussed.Comment: 4 pages, 3 eps figures, RevTeX, submitted to Phys. Rev. Let

    Ab initio and finite-temperature molecular dynamics studies of lattice resistance in tantalum

    Full text link
    This manuscript explores the apparent discrepancy between experimental data and theoretical calculations of the lattice resistance of bcc tantalum. We present the first results for the temperature dependence of the Peierls stress in this system and the first ab initio calculation of the zero-temperature Peierls stress to employ periodic boundary conditions, which are those best suited to the study of metallic systems at the electron-structure level. Our ab initio value for the Peierls stress is over five times larger than current extrapolations of experimental lattice resistance to zero-temperature. Although we do find that the common techniques for such extrapolation indeed tend to underestimate the zero-temperature limit, the amount of the underestimation which we observe is only 10-20%, leaving open the possibility that mechanisms other than the simple Peierls stress are important in controlling the process of low temperature slip.Comment: 12 pages and 9 figure

    Strong and weak chaos in weakly nonintegrable many-body Hamiltonian systems

    Full text link
    We study properties of chaos in generic one-dimensional nonlinear Hamiltonian lattices comprised of weakly coupled nonlinear oscillators, by numerical simulations of continuous-time systems and symplectic maps. For small coupling, the measure of chaos is found to be proportional to the coupling strength and lattice length, with the typical maximal Lyapunov exponent being proportional to the square root of coupling. This strong chaos appears as a result of triplet resonances between nearby modes. In addition to strong chaos we observe a weakly chaotic component having much smaller Lyapunov exponent, the measure of which drops approximately as a square of the coupling strength down to smallest couplings we were able to reach. We argue that this weak chaos is linked to the regime of fast Arnold diffusion discussed by Chirikov and Vecheslavov. In disordered lattices of large size we find a subdiffusive spreading of initially localized wave packets over larger and larger number of modes. The relations between the exponent of this spreading and the exponent in the dependence of the fast Arnold diffusion on coupling strength are analyzed. We also trace parallels between the slow spreading of chaos and deterministic rheology.Comment: 15 pages, 14 figure

    The role of the humoral immune response to Clostridium difficile toxins A and B in susceptibility to C. difficile infection: a case-control study

    Get PDF
    Antibody levels to Clostridium difficile toxin A (TcdA), but not toxin B (TcdB), have been found to determine risk of C. difficile infection (CDI). Historically, TcdA was thought to be the key virulence factor; however the importance of TcdB in disease is now established. We re-evaluated the role of antibodies to TcdA and TcdB in determining patient susceptibility to CDI in two separate patient cohorts. In contrast to earlier studies, we find that CDI patients have lower pre-existing IgA titres to TcdB, but not TcdA, when compared to control patients. Our findings suggest that mucosal immunity to TcdB may be important in the early stages of infection and identifies a possible target for preventing CDI progression
    corecore