230 research outputs found

    Development of Technology for Large Scale Production of Titanium Sponge

    Get PDF
    Intensive investigations on the development of titanium metal production technology had been carried out during 1965-1975 at the Bhabha Atomic Research Centre, Bombay and at the Nuclear Fuel Complex, Hyderabad. The Defence Metallurgical Research Laboratory, Hyderabad has set up a ‘Titanium Sponge Experimental Facility’ with a capacity to produce 100 tonnes of sponge per annum in 2000 kg batches by the Kroll’s process with a view to optimising technology for large scale production.The paper presents an outline of the experimental facility and discusses the various considerations that have gone into the design of equipment, materials of construction, process selection, etc. The facility has gone into operation in March,1985. The results obtained so far are encouraging

    Evaluation of the effects of tramadol and diclofenac alone and in combination on post-cesarean pain

    Get PDF
    Background: Post-cesarean pain is a common cause of acute pain in the obstetrics. Pain in the postoperative period is an important impediment to recovery from surgery and anesthesia. This study was conducted to evaluate the efficacy of postoperative analgesia and incidence of side-effects of centrally acting drug tramadol with peripherally acting drug diclofenac alone and in combination in patients undergoing elective cesarean delivery under spinal anesthesia.Methods: The study population of 90 patients was randomly divided into three groups of 30 each to receive the following treatments: tramadol (Group T), diclofenac (Group D), tramadol and diclofenac at reduced doses (Group TD).Results: Combination of tramadol and diclofenac produced significantly early analgesia in comparison to tramadol or diclofenac alone and decrease in the incidence of side-effects.Conclusion: We conclude that a multimodal approach to post-cesarean management with a combination of tramadol and diclofenac produced better analgesia than individual drugs and a reduction in the side-effects. Such a combination approach to relieve pain is more effective and advantageous

    Detection of low-level promoter activity within open reading frame sequences of Escherichia coli

    Get PDF
    The search for promoters has largely been confined to sequences upstream of open reading frames (ORFs) or stable RNA genes. Here we used a cloning approach to discover other potential promoters in Escherichia coli. Chromosomal fragments of ∼160 bp were fused to a promoterless lacZ reporter gene on a multi-copy plasmid. Eight clones were deliberately selected for high activity and 105 clones were selected at random. All eight of the high-activity clones carried promoters that were located upstream of an ORF. Among the randomly-selected clones, 56 had significantly elevated activity. Of these, 7 had inserts which also mapped upstream of an ORF, while 49 mapped within or downstream of ORFs. Surprisingly, the eight promoters selected for high activity matched the canonical σ(70) −35 and −10 sequences no better than sequences from the randomly-selected clones. For six of the nine most active sequences with orientations opposite to that of the ORF, chromosomal expression was detected by RT–PCR, but defined transcripts were not detected by northern analysis. Our results indicate that the E.coli chromosome carries numerous −35 and −10 sequences with weak promoter activity but that most are not productively expressed because other features needed to enhance promoter activity and transcript stability are absent

    Demographics and Histopathological Patterns of Oral Squamous Cell Carcinoma at a Tertiary Level Referral Hospital in Hyderabad, India: A 5-Year Retrospective Study

    Get PDF
    Background: To study the demographics and histopathological patterns of oral squamous cell carcinoma (OSCC) reported at a tertiary level referral teaching hospital in Hyderabad, India. Materials and methods: An institutional retrospective study of biopsies sent to a tertiary level referral teaching hospital, Hyderabad. The data was collected year-wise for a period of 5 years from 2007 to 2011 with reference to age, sex, site involved and final diagnosis based on the histopathological findings. Results: A total of 1,005 oral biopsies were reviewed. Of these, OSCC was seen in 234 cases (23.28%). Buccal mucosa (47.7%) was the most frequently involved site followed by tongue (27.6%). Most of the OSCC patients were in the age group of 41 to 50 years, males and histopathologically well-differentiated (62%). Conclusion: This study showed that OSCC is widespread in the patients of this region

    Syntheses, structure, reactivity and species recognition studies of oxo-vanadium(V) and -molybdenum(VI) complexes

    Get PDF
    Alkoxo-rich Schiff-bases of potentially tri-, tetra- and penta-dentate binding capacity, and their sodium tetrahydroborate-reduced derivatives, have been synthesized. Their oxo-vanadium(V) and -molybdenum(VI) complexes were synthesized and characterized using several analytical and spectral techniques including multinuclear NMR spectroscopy and single-crystal X-ray diffraction studies. Eight structurally different types of complexes possessing distorted square-pyramidal, trigonal-bipyramidal and octahedral geometries have been obtained. While (VO)-O-V exhibits dimeric Structures with 2-HOC6H4CH=NC(CH2OH)(3) and 2-HOC6H4CH2-NHC(CH2OH)(3) and related ligands through the formation of a symmetric V2O2 core as a result of bridging of one of the CH2O- groups, Mo O-VI gives only mononuclear complexes even when some unbound CH2OH groups are available and the metal center is co-ordinatively unsaturated. In all the complexes the nitrogen atom from a HC=N or H2CNH group of the ligand occupies a near trans position to the M=O bond. While the Schiff-base ligands act in a tri- and tetra-dentate manner in the vanadium(V) complexes, they are only tridentate in the molybdenum(VI) complexes. Proton NMR spectra in the region of bound CH, provides a signature that helps to differentiate dinuclear from mononuclear complexes. Carbon-13 NMR co-ordination induced shifts of the bound CH, group fit well with the charge on the oxometal species and the terminal or bridging nature of the ligand. The reactivity of the vanadium(V) complexes towards bromination of the dye xylene cyanole was studied. Transmetallation reactions of several preformed metal complexes of 2-HOC6H4CH=NC(CH2OH)(3) with VO3+ were demonstrated as was selective extraction of VO3+ from a mixture of VO(acac)(2)] and MoO2(acac)(2)] using this Schiff base. The unusual selectivity and that of related derivatives for VO3+ is supported by binding constants and the solubility of the final products, and was established through a.c. conductivity measurements. The cis-MoO22+ complexes with alkoxo binding showed an average Mo-O-alk distance of 1.926 Angstrom, a value that is close to that observed in the molybdenum(VI) enzyme dmso reductase (1.92 Angstrom). Several correlations have been drawn based on the data

    Portable Microfluidic Integrated Plasmonic Platform for Pathogen Detection

    Get PDF
    Timely detection of infectious agents is critical in early diagnosis and treatment of infectious diseases. Conventional pathogen detection methods, such as enzyme linked immunosorbent assay (ELISA), culturing or polymerase chain reaction (PCR) require long assay times, and complex and expensive instruments, which are not adaptable to point-of-care (POC) needs at resource-constrained as well as primary care settings. Therefore, there is an unmet need to develop simple, rapid, and accurate methods for detection of pathogens at the POC. Here, we present a portable, multiplex, inexpensive microfluidic-integrated surface plasmon resonance (SPR) platform that detects and quantifies bacteria, i.e., Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) rapidly. The platform presented reliable capture and detection of E. coli at concentrations ranging from ∼105 to 3.2 × 107 CFUs/mL in phosphate buffered saline (PBS) and peritoneal dialysis (PD) fluid. The multiplexing and specificity capability of the platform was also tested with S. aureus samples. The presented platform technology could potentially be applicable to capture and detect other pathogens at the POC and primary care settings. © 2015, Nature Publishing Group. All rights reserved

    Genetic variability and interrelationships of phenological, physicochemical and cooking quality traits in chickpea

    Get PDF
    Eighty-six chickpea (Cicer arietinum L.) genotypes, including 44 Kabuli type and 42 Desi type, were evaluated for their phenological, physicochemical and cooking quality traits. There were significant differences among the genotypes for days to 50% flowering (34–81 d), days to maturity (85–122 d), number of pods per plant (13–66), number of seeds per plant (15–85), 100-seed weight (10.5–58.6 g), seed yield (561–1852 kg/ha), hydration capacity (0.11–0.68 g water/seed), hydration index (0.80–1.21), swelling capacity (0.11–0.7 ml/seed), seed volume (0.1–0.52 ml/seed) and cooking time (38–125 min). The Desi and Kabuli types of chickpea differed significantly from each other for all the traits except for hydration index, swelling index and cooking time. High heritability coupled with high genetic advance was recorded for 100-seed weight, hydration capacity, swelling capacity and seed volume in both Desi and Kabuli genotypes. Seed size (100-seed weight and seed volume) showed significant positive correlations with hydration capacity and swelling capacity. Cooking time did not show any significant positive or negative correlation with any of the traits studied, including seed size, indicating that other additional factors may be involved in controlling cooking time. The results of this study indicate that it is possible to develop cultivars with faster cooking time in both Kabuli and Desi types and in all seed size categorie

    Nanoparticles for cancer imaging: The good, the bad, and the promise

    Get PDF
    Recent advances in molecular imaging and nanotechnology are providing new opportunities for biomedical imaging with great promise for the development of novel imaging agents. The unique optical, magnetic, and chemical properties of materials at the scale of nanometers allow the creation of imaging probes with better contrast enhancement, increased sensitivity, controlled biodistribution, better spatial and temporal information, multi-functionality and multi-modal imaging across MRI, PET, SPECT, and ultrasound. These features could ultimately translate to clinical advantages such as earlier detection, real time assessment of disease progression and personalized medicine. However, several years of investigation into the application of these materials to cancer research has revealed challenges that have delayed the successful application of these agents to the field of biomedical imaging. Understanding these challenges is critical to take full advantage of the benefits offered by nano-sized imaging agents. Therefore, this article presents the lessons learned and challenges encountered by a group of leading researchers in this field, and suggests ways forward to develop nanoparticle probes for cancer imaging. Published by Elsevier Ltd

    Large-Scale Discovery and Characterization of Protein Regulatory Motifs in Eukaryotes

    Get PDF
    The increasing ability to generate large-scale, quantitative proteomic data has brought with it the challenge of analyzing such data to discover the sequence elements that underlie systems-level protein behavior. Here we show that short, linear protein motifs can be efficiently recovered from proteome-scale datasets such as sub-cellular localization, molecular function, half-life, and protein abundance data using an information theoretic approach. Using this approach, we have identified many known protein motifs, such as phosphorylation sites and localization signals, and discovered a large number of candidate elements. We estimate that ∼80% of these are novel predictions in that they do not match a known motif in both sequence and biological context, suggesting that post-translational regulation of protein behavior is still largely unexplored. These predicted motifs, many of which display preferential association with specific biological pathways and non-random positioning in the linear protein sequence, provide focused hypotheses for experimental validation
    corecore