20 research outputs found

    AISMIG—an interactive server-side molecule image generator

    Get PDF
    Using a web browser without additional software and generating interactive high quality and high resolution images of bio-molecules is no longer a problem. Interactive visualization of 3D molecule structures by Internet browsers normally is not possible without additional software and the disadvantage of browser-based structure images (e.g. by a Java applet) is their low resolution. Scientists who want to generate 3D molecular images with high quality and high resolution (e.g. for publications or to render a molecule for a poster) therefore require separately installed software that is often not easy to use. The alternative concept is an interactive server-side rendering application that can be interfaced with any web browser. Thus it combines the advantage of the web application with the high-end rendering of a raytracer. This article addresses users who want to generate high quality images from molecular structures and do not have software installed locally for structure visualization. Often people do not have a structure viewer, such as RasMol or Chime (or even Java) installed locally but want to visualize a molecule structure interactively. AISMIG (An Interactive Server-side Molecule Image Generator) is a web service that provides a visualization of molecule structures in such cases. AISMIG-URL:

    Sharing of worldwide distributed carbohydrate-related digital resources: online connection of the Bacterial Carbohydrate Structure DataBase and GLYCOSCIENCES.de

    Get PDF
    Functional glycomics, the scientific attempt to identify and assign functions to all glycan molecules synthesized by an organism, is an emerging field of science. In recent years, several databases have been started, all aiming to support deciphering the biological function of carbohydrates. However, diverse encoding and storage schemes are in use amongst these databases, significantly hampering the interchange of data. The mutual online access between the Bacterial Carbohydrate Structure DataBase (BCSDB) and the GLYCOSCIENCES.de portal, as a first reported attempt of a structure-based direct interconnection of two glyco-related databases is described. In this approach, users have to learn only one interface, will always have access to the latest data of both services, and will have the results of both searches presented in a consistent way. The establishment of this connection helped to find shortcomings and inconsistencies in the database design and functionality related to underlying data concepts and structural representations. For the maintenance of the databases, duplication of work can be easily avoided, and will hopefully lead to a better worldwide acceptance of both services within the community of glycoscienists. BCSDB is available at and the GLYCOSCIENCES.de portal a

    Statistical analysis of the Bacterial Carbohydrate Structure Data Base (BCSDB): Characteristics and diversity of bacterial carbohydrates in comparison with mammalian glycans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are considerable differences between bacterial and mammalian glycans. In contrast to most eukaryotic carbohydrates, bacterial glycans are often composed of repeating units with diverse functions ranging from structural reinforcement to adhesion, colonization and camouflage. Since bacterial glycans are typically displayed at the cell surface, they can interact with the environment and, therefore, have significant biomedical importance.</p> <p>Results</p> <p>The sequence characteristics of glycans (monosaccharide composition, modifications, and linkage patterns) for the higher bacterial taxonomic classes have been examined and compared with the data for mammals, with both similarities and unique features becoming evident. Compared to mammalian glycans, the bacterial glycans deposited in the current databases have a more than ten-fold greater diversity at the monosaccharide level, and the disaccharide pattern space is approximately nine times larger. Specific bacterial subclasses exhibit characteristic glycans which can be distinguished on the basis of distinctive structural features or sequence properties.</p> <p>Conclusion</p> <p>For the first time a systematic database analysis of the bacterial glycome has been performed. This study summarizes the current knowledge of bacterial glycan architecture and diversity and reveals putative targets for the rational design and development of therapeutic intervention strategies by comparing bacterial and mammalian glycans.</p

    EUROCarbDB: An open-access platform for glycoinformatics

    Get PDF
    The EUROCarbDB project is a design study for a technical framework, which provides sophisticated, freely accessible, open-source informatics tools and databases to support glycobiology and glycomic research. EUROCarbDB is a relational database containing glycan structures, their biological context and, when available, primary and interpreted analytical data from high-performance liquid chromatography, mass spectrometry and nuclear magnetic resonance experiments. Database content can be accessed via a web-based user interface. The database is complemented by a suite of glycoinformatics tools, specifically designed to assist the elucidation and submission of glycan structure and experimental data when used in conjunction with contemporary carbohydrate research workflows. All software tools and source code are licensed under the terms of the Lesser General Public License, and publicly contributed structures and data are freely accessible. The public test version of the web interface to the EUROCarbDB can be found at http://www.ebi.ac.uk/eurocar

    EUROCarbDB: An open-access platform for glycoinformatics

    Get PDF
    The EUROCarbDB project is a design study for a technical framework, which provides sophisticated, freely accessible, open-source informatics tools and databases to support glycobiology and glycomic research. EUROCarbDB is a relational database containing glycan structures, their biological context and, when available, primary and interpreted analytical data from high-performance liquid chromatography, mass spectrometry and nuclear magnetic resonance experiments. Database content can be accessed via a web-based user interface. The database is complemented by a suite of glycoinformatics tools, specifically designed to assist the elucidation and submission of glycan structure and experimental data when used in conjunction with contemporary carbohydrate research workflows. All software tools and source code are licensed under the terms of the Lesser General Public License, and publicly contributed structures and data are freely accessible. The public test version of the web interface to the EUROCarbDB can be found at http://www.ebi.ac.uk/eurocarb

    The DBCLS BioHackathon: standardization and interoperability for bioinformatics web services and workflows. The DBCLS BioHackathon Consortium*

    Get PDF
    Web services have become a key technology for bioinformatics, since life science databases are globally decentralized and the exponential increase in the amount of available data demands for efficient systems without the need to transfer entire databases for every step of an analysis. However, various incompatibilities among database resources and analysis services make it difficult to connect and integrate these into interoperable workflows. To resolve this situation, we invited domain specialists from web service providers, client software developers, Open Bio* projects, the BioMoby project and researchers of emerging areas where a standard exchange data format is not well established, for an intensive collaboration entitled the BioHackathon 2008. The meeting was hosted by the Database Center for Life Science (DBCLS) and Computational Biology Research Center (CBRC) and was held in Tokyo from February 11th to 15th, 2008. In this report we highlight the work accomplished and the common issues arisen from this event, including the standardization of data exchange formats and services in the emerging fields of glycoinformatics, biological interaction networks, text mining, and phyloinformatics. In addition, common shared object development based on BioSQL, as well as technical challenges in large data management, asynchronous services, and security are discussed. Consequently, we improved interoperability of web services in several fields, however, further cooperation among major database centers and continued collaborative efforts between service providers and software developers are still necessary for an effective advance in bioinformatics web service technologies

    <it>GlycomeDB </it>– integration of open-access carbohydrate structure databases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although carbohydrates are the third major class of biological macromolecules, after proteins and DNA, there is neither a comprehensive database for carbohydrate structures nor an established universal structure encoding scheme for computational purposes. Funding for further development of the Complex Carbohydrate Structure Database (CCSD or CarbBank) ceased in 1997, and since then several initiatives have developed independent databases with partially overlapping foci. For each database, different encoding schemes for residues and sequence topology were designed. Therefore, it is virtually impossible to obtain an overview of all deposited structures or to compare the contents of the various databases.</p> <p>Results</p> <p>We have implemented procedures which download the structures contained in the seven major databases, e.g. GLYCOSCIENCES.de, the Consortium for Functional Glycomics (CFG), the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Bacterial Carbohydrate Structure Database (BCSDB). We have created a new database called <it>GlycomeDB</it>, containing all structures, their taxonomic annotations and references (IDs) for the original databases. More than 100000 datasets were imported, resulting in more than 33000 unique sequences now encoded in <it>GlycomeDB </it>using the universal format GlycoCT. Inconsistencies were found in all public databases, which were discussed and corrected in multiple feedback rounds with the responsible curators.</p> <p>Conclusion</p> <p><it>GlycomeDB </it>is a new, publicly available database for carbohydrate sequences with a unified, all-encompassing structure encoding format and NCBI taxonomic referencing. The database is updated weekly and can be downloaded free of charge. The JAVA application <it>GlycoUpdateDB </it>is also available for establishing and updating a local installation of <it>GlycomeDB</it>. With the advent of <it>GlycomeDB</it>, the distributed islands of knowledge in glycomics are now bridged to form a single resource.</p
    corecore