34 research outputs found

    Maturation of Oxycodone Pharmacokinetics in Neonates and Infants : a Population Pharmacokinetic Model of Three Clinical Trials

    Get PDF
    Purpose The aim of the current population pharmacokinetic study was to quantify oxycodone pharmacokinetics in children ranging from preterm neonates to children up to 7 years of age. Methods Data on intravenous or intramuscular oxycodone administration were obtained from three previously published studies (n = 119). The median [range] postmenstrual age of the subjects was 299 days [170 days-7.8 years]. A population pharmacokinetic model was built using 781 measurements of oxycodone plasma concentration. The model was used to simulate repeated intravenous oxycodone administration in four representative infants covering the age range from an extremely preterm neonate to 1-year old infant. Results The rapid maturation of oxycodone clearance was best described with combined allometric scaling and maturation function. Central and peripheral volumes of distribution were nonlinearly related to bodyweight. The simulations on repeated intravenous administration in virtual patients indicated that oxycodone plasma concentration can be kept between 10 and 50 ng/ml with a high probability when the maintenance dose is calculated using the typical clearance and the dose interval is 4 h. Conclustions Oxycodone clearance matures rapidly after birth, and between-subject variability is pronounced in neonates. The pharmacokinetic model developed may be used to evaluate different multiple dosing regimens, but the safety of repeated doses should be ensured.Peer reviewe

    Corneal and conjunctival drug permeability: Systematic comparison and pharmacokinetic impact in the eye

    Get PDF
    On the surface of the eye, both the cornea and conjunctiva are restricting ocular absorption of topically applied drugs, but barrier contributions of these two membranes have not been systemically compared. Herein, we studied permeability of 32 small molecular drug compounds across an isolated porcine cornea and built a quantitative structure-property relationship (QSPR) model for the permeability. Corneal drug permeability (data obtained for 25 drug molecules) showed a 52-fold range in permeability (0.09-4.70x10(-6) cm/s) and the most important molecular descriptors in predicting the permeability were hydrogen bond donor, polar surface area and halogen ratio. Corneal permeability values were compared to their conjunctival drug permeability values. Ocular drug bioavailability and systemic absorption via conjunctiva were predicted for this drug set with pharmacokinetic calculations. Drug bioavailability in the aqueous humour was simulated to be <5% and trans-conjunctival systemic absorption was 34-79% of the dose. Loss of drug across the conjunctiva to the blood circulation restricts significantly ocular drug bioavailability and, therefore, ocular absorption does not increase proportionally with the increasing corneal drug permeability.Peer reviewe

    Imaging, quantitation and kinetic modelling of intravitreal nanomaterials

    Get PDF
    In this study, the intravitreal pharmacokinetics of nanomaterials were investigated in vivo in rats and rabbits. Impact of particle size and shape (spherical, longitudinal) on ocular particle distribution and elimination was investigated with fundus camera, optical coherence tomography and ocular fluorophotometry. Differently sized particles showed prolonged ocular retention and remarkable differences in vitreal elimination, but size dependence was consistent, suggesting that other features have influence on their vitreal kinetics. We also demonstrate that liposomes are eliminated from the rabbit vitreous mainly via the anterior route. Simulation of drug concentrations after injection of intravitreal particles shows the importance of synchronized particle retention and drug release rate for efficient drug delivery. In conclusion, we provide kinetic insights in intravitreally administered nanoparticles to improve retinal drug delivery.Peer reviewe

    Topical ocular pharmacokinetics and bioavailability for a cocktail of atenolol, timolol and betaxolol in rabbits

    Get PDF
    Ocular bioavailability after eye drops administration is an important, but rarely determined, pharmacokinetic parameter. In this study, we measured the pharmacokinetics of a cocktail of three beta blockers after their topical administration into the albino rabbit eye. Samples from aqueous humour were analysed with LC-MS/MS. The pharmacokinetic parameters were estimated using compartmental and non-compartmental analyses. The ocular bioavailability was covering broad range of values: atenolol (0.07 %), timolol (1.22%, 1.51%) and betaxolol (3.82%, 4.31%). Absolute ocular bioavailability presented a positive trend with lipophilicity and the values showed approximately 60-fold range. The generated data enhances our understanding for ocular pharmacokinetics of drugs and may be utilized in pharmacokinetic model building in ophthalmic drug development.Peer reviewe

    Distribution of Small Molecular Weight Drugs into the Porcine Lens : Studies on Imaging Mass Spectrometry, Partition Coefficients, and Implications in Ocular Pharmacokinetics

    Get PDF
    Lens is the avascular tissue in the eye between the aqueous humor and vitreous. Drug binding to the lens might affect ocular pharmacokinetics, and the binding may also have a pharmacological role in drug-induced cataract and cataract treatment. Drug distribution in the lens has been studied in vitro with many compounds; however, the experimental methods vary, no detailed information on distribution between the lens sublayers exist, and the partition coefficients are reported rarely. Therefore, our objectives were to clarify drug localization in the lens layers and establish partition coefficients for a wide range of molecules. Furthermore, we aimed to illustrate the effect of lenticular drug binding on overall ocular drug pharmacokinetics. We studied the distribution of 16 drugs and three fluorescent dyes in whole porcine lenses in vitro with imaging mass spectrometry and fluorescence microscopy techniques. Furthermore, we determined lens/buffer partition coefficients with the same experimental setup for 28 drugs with mass spectrometry. Finally, the effect of lenticular binding of drugs on aqueous humor drug exposure was explored with pharmacokinetic simulations. After 4 h, the drugs and the dyes distributed only to the outermost lens layers (capsule and cortex). The lens/buffer partition coefficients for the drugs were low, ranging from 0.05 to 0.8. On the basis of the pharmacokinetic simulations, a high lens-aqueous humor partition coefficient increases drug exposure in the lens but does not significantly alter the pharmacokinetics in the aqueous humor. To conclude, the lens seems to act mainly as a physical barrier for drug distribution in the eye, and drug binding to the lens affects mainly the drug pharmacokinetics in the lens.Peer reviewe

    Ocular intracameral pharmacokinetics for a cocktail of timolol, betaxolol and atenolol in rabbits

    Get PDF
    The mechanisms of drug clearance from the aqueous humor are poorly defined. In this study, a cocktail approach was used to simultaneously determine the pharmacokinetics of three β-blocker agents after intracameral (ic) injection into the rabbit eyes. Aqueous humor samples were collected and analyzed using LC–MS/MS to determine drug concentrations. Pharmacokinetic parameters were obtained using a compartmental fitting approach, and the estimated clearance, volume of distribution, and half-life values were the following: atenolol (6.44 μL/min, 687 μL, and 73.87 min), timolol (19.30 μL/min, 937 μL, and 33.64 min), and betaxolol (32.20 μL/min, 1421 μL, and 30.58 min). Increased compound lipophilicity (atenolol < timolol < betaxolol) resulted in higher clearance and volume of distributions in the aqueous humor. Clearance of timolol and betaxolol is about 10 times higher than the aqueous humor outflow, demonstrating the importance of other elimination routes (e.g., uptake to iris and ciliary body and subsequent elimination via blood flow)
    corecore