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Abstract 

On the surface of the eye, both the cornea and conjunctiva are restricting ocular absorption of topically 

applied drugs, but barrier contributions of these two membranes have not been systemically compared. 

Herein, we studied permeability of 32 small molecular drug compounds across an isolated porcine cornea 

and built a quantitative structure-property relationship (QSPR) model for the permeability. Corneal drug 

permeability (data obtained for 25 drug molecules) showed a 52-fold range in permeability (0.09-4.70 x 

10-6 cm/s) and the most important molecular descriptors in predicting the permeability were hydrogen 

bond donor, polar surface area and halogen ratio. Corneal permeability values were compared to their 

conjunctival drug permeability values.  Ocular drug bioavailability and systemic absorption via 

conjunctiva were predicted for this drug set with pharmacokinetic simulations. Drug bioavailability in 

the aqueous humour was simulated to be less than 5% and trans-conjunctival systemic absorption was 

34-79% of the dose. Loss of drug across the conjunctiva to the blood circulation restricts significantly 

ocular drug bioavailability and, therefore, ocular absorption does not increase proportionally with the 

increasing corneal drug permeability.   
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Abbreviations 

QSPR (quantitative structure-property relationship) 

LogD7.4 (the logarithm of the octanol-water distribution coefficient at pH 7.4)  

Papp, CJ (conjunctival permeability) 

Papp, CO (corneal permeability) 

PSA (polar surface area) 

HBD (hydrogen bond donor) 
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F (bioavailability)  
Cl (clearance) 
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1. Introduction 

 

Eye drops are the most commonly used drug formulation in ophthalmology (Urtti, 2006). They are widely 

used in the treatment of glaucoma, dry eye disease, infections and inflammatory conditions of the anterior 

part of the eye. Cornea and conjunctiva are the major tissue barriers that limit ocular drug absorption 

after instillation of eye drops. Cornea represents a tight barrier and route for drug absorption into the 

aqueous humour of the eye; the most commonly used sampling site in ocular bioavailability studies 

(Ahmed and Patton, 1987, 1985; Doane et al., 1978). Although, the conjunctival epithelium has inter-

cellular tight junctions, it is leakier than the cornea (Ahmed and Patton, 1987; Huang et al., 1989; 

Hämäläinen et al., 1997) and has a surface area 17 times larger than cornea (Watsky et al., 1988). 

Conjunctiva is a route for ocular drug absorption, particularly to the iris and ciliary body (Ahmed and 

Patton, 1987, 1985; Shikamura et al., 2016), but most trans-conjunctival permeation leads to systemic 

drug absorption from the conjunctival sac (Urtti et al., 1994, 1985).    

 

Cornea is composed of three main layers: the outermost epithelium, the middle stroma, and the innermost 

endothelium. The epithelium has tight junctions in the most superficial cells and it represents the rate-

limiting barrier (Huang et al., 1989, 1983) that restricts drug permeation, especially for hydrophilic and 

large molecules (Ahmed et al., 1987; Huang et al., 1989). Hydrophilic and highly permeable stroma may 

limit permeation of very lipophilic drugs that show restricted partitioning from the epithelium to the 

stroma (Huang et al., 1983; Prausnitz and Noonan, 1998). The corneal endothelium is not considered to 

be a significant barrier in ocular drug absorption (Huang et al., 1983; Prausnitz and Noonan, 1998). The 

conjunctiva covers the inner side of the eyelids and the anterior part of the sclera thus serving as a barrier 

between lacrimal fluid and the eye (bulbar conjunctiva), as well as the blood circulation (palpebral 

conjunctiva). The conjunctiva is a semi-transparent mucous membrane, composed of multi-layered 

epithelium on top of vascularised connective tissue (Dartt, 2002).  

 

After eye drop instillation, the drug is eliminated from the lacrimal fluid by drainage of extra solution, 

induced lacrimation, tear turnover, and conjunctival absorption (Lee and Robinson, 1979; Thombre and 

Himmelstein, 1984; Urtti et al., 1994, 1985). The pre-corneal loss factors and the corneal barrier limit 

ocular drug absorption, resulting in low bioavailability in the anterior chamber (typically less than 5%) 

(Chrai and Robinson, 1974; Lazare and Horlington, 1975; Maurice and Mishima, 1984; Urtti et al., 1990). 
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On the other hand, much larger fraction of the instilled dose will enter systemic blood circulation through 

conjunctiva and nasal mucosa (Chang and Lee, 1987; Urtti et al., 1994, 1985; Urtti and Salminen, 1993). 

For example, 70-80% of timolol dose absorbs systemically (Chang and Lee, 1987; Urtti et al., 1985) and 

this caused systemic adverse drug effects (Nelson et al., 1986).  

 

In order to develop new ocular drugs and drug formulations it is important to understand drug 

permeability at the cornea and conjunctiva, and their impact on ocular drug absorption. We published a 

study on permeability of 30 drugs in the isolated porcine conjunctivas and built a predictive quantitative 

structure-property relationship (QSPR) model for the permeability (Ramsay et al., 2017), but the field 

still lacks such predictive models for corneal drug permeability that are based on experimental data with 

a large set of drug compounds using similar test method. Ocular pharmacokinetic rabbit models have 

been published for topical eye drops (Deng et al., 2016; Grass and Lee, 1993; Himmelstein et al., 1978; 

Lee and Robinson, 1979; Makoid and Robinson, 1979; Miller et al., 1981; Thombre and Himmelstein, 

1984), but these models are based on absorption of individual compounds and systematic comparisons 

of corneal and conjunctival drug permeability with wider chemical space and related pharmacokinetic 

models are missing. Such information would be useful in ocular drug development. We studied the 

corneal drug permeability across ex vivo porcine cornea and constructed a QSPR model for the corneal 

drug permeability. Additionally, the corneal and conjunctival (Ramsay et al., 2017) drug permeabilities 

were utilized to predict their impact on ocular and systemic drug absorption from the ocular surface.  

 

 

2. Materials and methods 

 

2.1 Compounds and sample preparation 

We used 32 compounds that were in the cassette dose described earlier (Ramsay et al., 2017).  The stock 

solutions were prepared, in either phosphate-buffer saline (PBS) or dimethyl sulfoxide (DMSO), at two 

different concentrations (1 and 10 mg/mL), based on the analytical quantitation limits. The stock 

solutions of each drug were combined and diluted with BSS Plus (Alcon Laboratories, TX, USA). The 

final drug concentration in the apical side of the diffusion chamber was either 2 or 20 µg/mL. The 

following ten drugs had a higher final concentration (20 μg/mL): aztreonam, bromfenac, dexamethasone, 

diclofenac, indomethacin, levocabastine, methazolamide, prednisolone, quinidine, and tizanidine; 

whereas the rest of the cassette dose drugs had a lower final drug concentration (2 μg/mL). 
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2.2 Tissue preparation 

The porcine eyes were obtained from a local slaughterhouse and kept on ice in Dulbecco’s phosphate-

buffered saline (DPBS, pH 7.4) (Gibco, Invitrogen, NY, USA) during transport to the laboratory. The 

cornea was isolated and used in the permeability study. First, a small cut was made with the scalpel at 

the limbus, which separates the cornea from the conjunctiva. Then, the cornea was dissected from the 

eyeball by cutting along the limbus. During the preparation care was taken to avoid drying of the tissue, 

by applying on the cornea balanced salt solution, containing glutathione, glucose, bicarbonate, and 

electrolytes (BSS Plus, pH 7.4 and osmolarity 305 mOsm/kg) (Alcon Laboratories, TX, USA). 

 

2.3 Permeability study 

The isolated porcine cornea was first placed between two silicon rings (circular aperture of 0.64 cm2). 

Then the silicon-cornea-silicon set up was placed in a vertical Ussing/diffusion chamber (Harvard 

Apparatus, MA, USA). Both the apical and basolateral side of the diffusion chamber were filled with 5.5 

mL or 6.5 mL pre-warmed BSS Plus buffer, respectively. The chambers were equipped with gas tubing 

providing the cornea with 5% CO2 in O2, at a low speed. A circulating water bath (Haake DC10-W26/B, 

Thermo Scientific, MA, USA) was connected to a heat block surrounding the chambers and maintaining 

the temperature at 35 °C. The chambers were also equipped with electrode caps and glass barrel Ag/AgCl 

electrodes (NaviCyte Electrodes, Harvard Apparatus, MA, USA), which were connected to a voltage-

current clamp (VCC MC 6, Physiologic Instruments, CA, USA), for the measurement of trans-epithelial 

electrical resistance (TER).  The permeability experiments were started by removing 550 µL from the 

apical side and replacing with the same volume of the cassette dose. The initial donor concentration on 

the apical side (referring to the surface of the eye) was either 2 or 20 µg/mL, depending on the drug. 

Samples of 500 µL were then withdrawn from the basolateral side (referring to the aqueous humour side) 

at 15, 30, 45, 60, 75, 90, 120, 150,180, 210, 240, 270, 300, 330 and 360 min. The removed sample was 

replaced with the same volume of fresh BSS Plus buffer. At the beginning and at the end of the 

experiment a sample of 40 µL was withdrawn from the apical side of the diffusion chamber for Papp 

calculations.  Samples were stored in – 20 °C until LC-MS/MS analysis.  

 

The apparent permeability coefficient (Papp) of the drug across the cornea was calculated as: Papp, CJ 

(cm/s)= J/(C0*A). Where J (ng/s) is the drug flux (at the linear period after lag time) across the tissue, C0 
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is the initial donor concentration (ng/cm3), and A the area of the exposed tissue (0.64 cm2).  The sink 

conditions were maintained during the permeability experiments, the drug concentration of the receiver 

site was <10% of that on the donor site.  

 

2.4 Quantitative analysis 

The drug permeability was analysed with a LC-MS/MS system, which consisted of an Agilent 1290 

series liquid chromatograph and an Agilent 6495 triple-quadrupole mass spectrometer (Agilent 

Technologies, Inc., USA) with electrospray ionization. For more detailed information please refer to 

Ramsay et al., 2017. 

 

2.5 Multivariate QSPR model generation 

A corneal drug permeability QSPR model was generated with multivariate analysis tools, composed of 

principal component analysis (PCA) and linear partial least square (PLS). For the model building, we 

used the apparent corneal permeability (Papp, CO) values of 25 small molecular drugs of the cassette dose 

and their 35 molecular descriptors.  

 

2.5.1 Molecular descriptors 

The 35 molecular descriptors were calculated based on the structure-data file format of 25 drugs of the 

cassette dose, using the ACDlabs® software (version 12, Advanced Chemistry Development, Inc., 

Toronto, Canada). The following  molecular descriptors were generated: molecular weight (MW);  pKa 

for the most acidic molecular form (pKa MA); pKa for the most basic molecular form (pKa MB); LogD 

at pH 5.5, 7.4, and 10; LogP; polar surface area (PSA); freely rotatable bonds (FRB); hydrogen bond 

donors (HBD); hydrogen bond acceptors (HBA); HBtot (HBD + HBA); rule of 5 (Rule5); molar 

refractivity (MR); molar volume (MV); parachor; index of refraction (IR); surface tension (Ste); density; 

polarizability; C ratio; N ratio; NO ratio; hetero ratio; halogen ratio; number of rings (Num Rings); 

number of aromatic rings; 3-, 4-, 5- and 6-membered rings; and percentage of ionized form (acid, basic, 

neutral or zwitterion) at pH 7.4 (Sol% A, B, N or Z (7.4)). 

 

2.5.2 Model Calibration and Building 

The QSPR model was calibrated and built using PCA and PLS, respectively (Simca ®, version 14.1, 

Umetrics AB, Umeå, Sweden). Descriptors that did not show normal distribution, where logarithmically 
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transformed. The PCA was used to visualize the chemical space of the small molecular drugs. An external 

test set was chosen and excluded for later model validation. The drugs in the external data set were chosen 

randomly after drugs representing extreme descriptor and permeability values were ignored. During 

model calibration descriptors with narrow variance were excluded aiming for PCA model with a 

goodness of fit R2 and predictability Q2 higher than 0.5. In the PLS, the relationship between the 

logarithm of the corneal permeability (logPapp, CO) and the remaining molecular descriptors of the drug 

set (training set) were modelled. Descriptors with a small influence on the model were excluded during 

the modelling based on the plots of PLS weight, coefficient, and variable importance for the projection.  

 

2.5.3 Model validation and applicability domain 

The reliability of the predictive PLS model was validated by internal and external validation. During the 

PLS model building the training set was internally validated by cross-validation (Q2Y), which meant that 

one-seventh of the data was left out for the cross-validation. The generated PLS model was externally 

validated by determining the regression coefficient, when plotting the predicted versus the experimental 

values of the external test set (Qe
2). An accurate model shows values higher than 0.5 for Q2Y and Qe

2. 

Additionally, the Y-randomization test was conducted to prove the robustness of the model. The 

generated QSPR model can only be used for compounds, which have a similar chemical space as that of 

the training set drugs.  

 

2.6 Prediction of ocular and systemic drug absorption from the ocular surface 

The impact of corneal and conjunctival drug permeability on drug absorption to the aqueous humour and 

the systemic blood circulation were calculated based on corneal and conjunctival clearance (Cl), as well 

as, tear flow rate (Q). However, we did not taking into account solution drainage and induced lacrimation 

that may take place after eye drop instillation (Chrai et al., 1973; Conrad et al., 1978). Corneal and 

conjunctival clearance values (Cl cornea, Cl conjunctiva) were calculated by multiplying the apparent 

permeability in the cornea (Papp, CO ; present study) or conjunctiva (Papp, CJ ; Ramsay et al., 2017) for each 

drug with either the corneal surface area (1.04 cm2) or half of the conjunctival surface area (8.83 cm2), 

respectively. Half of the conjunctival surface area was used, because we assumed that the applied eye 

drop is quickly draining to the lower fornix where the drug is absorbed, rather than in the upper fornix. 

The human tear flow rate (Q tear) was reported in the literature as 1.2 μL/min (Lee and Robinson, 1986). 

Topical clearance from the lacrimal fluid was calculated as:  
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Topical clearance = Cl cornea + Cl conjunctiva + Q tear    

 (1) 

 

Then, trans-corneal drug absorption was estimated as bioavailability (F) in the aqueous humour as: 

 

  F aqueous humour (%) = Cl cornea / Topical clearance    

 (2) 

 

Trans-conjunctival drug absorption to the systemic blood circulation was estimated as: 

 

  F conjunctival systemic (%) = Cl conjunctiva / Topical clearance   (3) 

 

We assumed that the drug is evenly distributed in the tear fluid, and that the amount of drug that crosses 

the conjunctiva will enter the systemic circulation. Drug elimination from the ocular surface in the tear 

fluid may be partly absorbed to the systemic blood circulation, but this factor is very difficult to predict.  

 

3. Results 

 

3.1 Corneal drug permeability 

Drug permeability in the isolated porcine corneas varied over 52-fold range (0.09-4.70 x 10-6 cm/s) for 

25 small molecular drugs (Table 1). Concentrations of seven drugs in the cassette dose (acyclovir, 

cephalexin, ciprofloxacin, dorzolamide, ganciclovir, lornoxicam, and methotrexate) were below the limit 

of quantification and the calculation of their Papp values was not possible. Integrity of the corneas were 

confirmed by the solute permeability values (Papp, CO) and bioelectrical measurements (TER). The TER 

values were 372 ± 54 Ω x cm2 (n = 7) at the beginning and 917 ± 362 Ω x cm2 (n = 6) at the end of the 

permeability assays.  

 

Table 1. Compounds in the permeability studies. MW, LogD7.4, PSA and HBD molecular descriptors, 

experimental (± SD) and/ or predicted corneal permeability values, and the number (n) of isolated corneal 

tissue samples tested per drug. 
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Name MW LogD7.4 PSAa HBD 
Halogen 

ratiob 

Experimental Papp, 

CO 

 (10-7 cm/s) 

Predicted 

Papp,CO 

 (10-7 cm/s) 

n 

Acetazolamide 222.3 -0.69 151.7 3 0.00 2.27 ± 0.70  1.74 3 

Ampicillin * 349.4 -1.84 138.0 4 0.00 1.89 ± 0.24 1.37 3 

Atenolol 266.3 -1.76 84.6 4 0.00 1.72 ± 0.87  2.00 7 

Atropine 289.4 -1.09 49.8 1 0.00 5.64 ± 2.15  7.61 7 

Aztreonam 435.4 -4.32 238.2 5 0.00 1.02 ± 0.49  0.66 3 

Betaxolol 307.4 0.43 50.7 2 0.00 15.80 ± 10.70  5.50 7 

Brinzolamide 383.5 4.19 163.8 3 0.00 1.36 ± 0.35  1.64 3 

Bromfenac  334.2 -1.04 80.4 3 0.05 3.99 ± 2.67  4.01 5 

Carteolol 292.4 -0.74 70.6 3 0.00 1.43 ± 0.49  3.13 7 

Dexamethasone 

* 
392.5 2.03 94.8 3 0.04 1.57 ± 0.75  3.20 7 

Diclofenac  296.2 1.44 49.3 2 0.11 6.20 ± 6.49  12.03 5 

Fluconazole * 306.3 0.45 81.7 1 0.09 9.97 ± 4.50  9.76 7 

Indomethacin 357.8 0.98 68.5 1 0.04 5.03 ± 3.62  7.85 5 

Ketorolac 255.3 -0.34 59.3 1 0.00 3.49 ± 0.72  6.65 4 

Levocabastine 420.5 1.55 64.3 1 0.03 4.08 ± 2.16  7.82 4 

Lincomycin 406.5 -0.36 147.8 5 0.00 0.90 ± 0.32  0.96 7 

Methazolamide  236.3 -0.21 138.9 2 0.00 4.74 ± 1.66  2.54 7 

Nadolol  309.4 -1.54 82.0 4 0.00 1.22 ± 0.41  2.05 7 

Pilocarpine 208.3 -0.39 44.1 0 0.00 17.86 ± 6.02 11.38 7 

Pindolol * 248.3 -0.5 57.3 3 0.00 7.54 ± 4.79  3.68 4 

Prednisolone 360.4 1.63 94.8 3 0.00 2.03 ± 0.89  2.50 4 

Propranolol 259.3 0.79 41.5 2 0.00 15.18 ± 14.66 6.42 4 

Quinidine * 324.4 0.98 45.6 1 0.00 8.68 ± 6.25  8.14 7 

Tizanidine  253.7 2.04 90.4 2 0.06 47.04 ± 17.57   4 

Voriconazole  349.3 1.21 76.7 1 0.12 31.68 ± 15.34  12.52 4 
a PSA is calculated based on topological PSA  
b Halogen ratio, is calculated as the sum of all halogens (F, Cl, Br, I) divided by the sum of all heavy 

atoms (excluding hydrogen)  

* external data set 
 

 

3.2 Multivariate QSPR model for corneal drug permeability  

The QSPR model was generated for 24 drugs excluding tizanidine that was an outlier and showed to bias 

the model in preliminary studies. The QSPR model generation stages and results are shown in Figure 1. 

 

3.2.1 Molecular descriptors and model calibration (PCA) 
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A complete list of the 24 drugs and 35 molecular descriptors that were used for QSPR modelling are 

found in the Supplementary data A. The small molecular drug set represent a broad chemical space: MW 

of 208.3-435.4 Da, LogD7.4 from -4.3 to +4.2, PSA of 41.5-238.2 Å2, HBtot (HBA + HBD) of 4-18, and 

halogen ratio of 0-0.12. 

 

Before model calibration (PCA) an external test set of five drugs (ampicillin, dexamethasone, 

fluconazole, pindolol, and quinidine) was removed. In the present study, an internal test set of drugs was 

not used, due to the small set of drugs available. The PCA analysis was conducted with the remaining 19 

drugs, and the following five descriptors were removed due to low variance: 3-, 4- and, 5-membered 

rings, number of rings, and percentage of ionized species. A statistically significant PCA model was 

obtained (R2 of 0.87 and Q2 of 0.57, 30 descriptors) with four principal components explaining the 

variance of the descriptor space. The chemical space of the training set is illustrated with two principal 

components in Figure 2. The principal components explained 38% t1  and 22% t2 of the variance in 

the set, respectively.  

 

3.2.2 Model building (PLS), validation and applicability  

The training set of 19 drugs was used to generate a predictive model for corneal drug permeability. The 

final model showed that polar surface area (PSA), hydrogen bond donor (HBD) and halogen ratio were 

essential in permeability prediction (Table 2). The model showed acceptable statistical significance, with 

goodness of fit R2X of 0.62 and R2Y of 0.69, and goodness of prediction Q2Y of 0.63. The regression 

coefficient of the predicted versus experimental corneal permeability for the external test set drugs (Qe2) 

was 0.66 (Fig. 3). The model predicted the external test set with a mean fold error of 1.5. The robustness 

of the model, tested with Y-randomization test, was good (Supplementary data B). The model can be 

applied for predicting corneal drug permeability of new compounds with a similar chemical space as that 

of the training set drugs (Supplementary data A). 

 

Table 2. The linear partial least square (PLS) model for the corneal drug permeability including 
validation results.  

Model Descriptors R2Xa R2Ya Q2Yb Qe2c Y-

randomization 
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LogPapp, CO = -4.6823 - 

0.7670(logPSA)      - 0.1346 (HBD) + 

3.0024(Halogen ratio) 

 

PSA, HBD 

& 

Halogen 

ratio 

0.62 0.69 0.63 0.66 Ok 

a R2X and R2Y describe the goodness of fit of the training set  
b Q2Y describe the goodness of prediction of the model 
c Qe2 is the regression coefficient of predicted versus experimental values for the external test set 

 

3.3 Role of corneal and conjunctival permeability in ocular and systemic drug absorption from the 

ocular surface  

Based on the conjunctival drug permeability and simulations drug elimination from tear fluid across the 

conjunctiva had a great impact on bioavailability to the aqueous humour and trans-conjunctival systemic 

bioavailability. Based on the calculations, trans-conjunctival permeation of the test drugs is expected to 

lead to systemic absorption of 34-79% of the drug dose. Only 0.3-4.4% of the applied dose reaches the 

aqueous humour via trans-corneal permeation (Fig. 4). Tear flow removes 18-66% of the dose to the 

nasal cavity and possibly further. It is noteworthy that the increase in the corneal drug permeability did 

not result in a proportional increase of ocular drug bioavailability, because the increased corneal 

permeability is associated with higher permeation in the conjunctiva that leads to drug loss to the systemic 

blood circulation. More than 50-fold increase in corneal drug permeability resulted in only 14-fold 

increase in drug absorption to the aqueous humour (Fig. 4). The clearance and bioavailability values of 

the 25 test compounds are available in the Supplementary data C.  

 

4. Discussion 

 

Small molecular drug compounds are widely used as eye drops to treat anterior segment diseases (Urtti, 

2006). In this study we show that the drug permeability in isolated porcine cornea of the presented drug 

set varies over 52-fold range. Broad range of permeability values reflects the tight barrier in the corneal 

epithelium (Ahmed et al., 1987; Huang et al., 1989, 1983; Hämäläinen et al., 1997). For example, 

hydrophilic lincomycin (0.90 ± 0.32 x 10-7 cm/s) permeated much slower across the cornea than 

lipophilic voriconazole (31.68 ± 15.34 x 10-7 cm/s). Most of the permeability studies are done with rabbit 

cornea that seems to be more permeable than the porcine (Kidron et al., 2010; Loch et al., 2012; Prausnitz 

and Noonan, 1998; Wang et al., 1991). For instance pindolol has a 14 times smaller permeability in the 

porcine cornea compared to that of rabbit (1.04 ± 0.04 x 10-5, Wang et al., 1991). This is probably due to 
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both thinner corneal epithelium and the whole cornea tissue of the rabbit compared to that of the porcine 

eye (Agarwal and Rupenthal, 2016). Relationship with the permeability in human cornea is difficult to 

assess because only very limited data is available from human cornea studies.   

 

Corneal drug permeability is known to be affected by drug properties, such as lipophilicity, molecular 

size, and charge (Ahmed et al., 1987; Brechue and Maren, 1993; Chien et al., 1990; Huang et al., 1989, 

1983; Liaw et al., 1992; Pescina et al., 2015; Schoenwald and Huang, 1983; Wang et al., 1991). Usually 

these studies have been performed with rabbit corneas and only a few compounds.  Some reports include 

larger data sets on corneal drug permeability, but they have been collected from different sources with 

variable research methods (Kidron et al., 2010; Prausnitz and Noonan, 1998). In the present study, 

corneal permeability values were generated for 25 compounds using identical experimental set up. This 

should minimize variation that is related to the methods. Statistically valid QSPR model was generated 

based on the permeation data, and polar surface area (PSA), hydrogen bond donor (HBD), and halogen 

ratio adequately predict the corneal permeation. PSA and HBD have an inverse effect on drug 

permeability across the cornea, whereas the halogen ratio has a positive effect. PSA and the ability to 

form hydrogen bonds are important descriptors also in drug permeation across the porcine conjunctiva 

(Ramsay et al., 2017), rabbit cornea (Kidron et al., 2010), and human intestine (Linnankoski et al., 2006; 

Winiwarter et al., 1998).  

 

Systematic quantitative comparison of porcine corneal and conjunctival permeation reveals that the 

cornea is 8.6 ± 4.4 times tighter barrier than the conjunctiva (Fig. 5). A similar pattern has been shown 

in studies with rabbit and bovine membranes (Ahmed et al., 1987; Huang et al., 1989; Hämäläinen et al., 

1997; Loch et al., 2012; Wang et al., 1991). However, the range of permeability values was narrower in 

the conjunctiva (8.5 fold) than in the cornea (52 fold).   

 

Pre-corneal flow (drainage, tear turnover) factors and permeability (cornea, conjunctiva) determine the 

overall ocular drug bioavailability. According to our simulations the trans-corneal drug bioavailability in 

the aqueous humour was less than 5% and, in many cases less than 1% (Fig. 4). The simulations are in 

line with in vivo rabbit experiments showing low bioavailability to the aqueous humour (< 5%) (Chrai 

and Robinson, 1974; Lazare and Horlington, 1975; Maurice and Mishima, 1984; Urtti et al., 1990) and 

high systemic absorption after eye drop application (Chang and Lee, 1987; Urtti et al., 1994, 1985; Urtti 
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and Salminen, 1993).  It is important to note that the increase in ocular bioavailability is less than the 

proportional increase in the corneal permeability, because both ocular absorption and systemic loss are 

increased for compounds with high membrane permeability.  

 

The simulations showed that a large fraction of the drug dose is eliminated to the systemic blood 

circulation across the conjunctiva (34-79%).  Large surface area of the relatively permeable conjunctiva 

explains this result that is in line with previous results with pilocarpine (Thombre and Himmelstein, 

1984; Urtti et al., 1985). Also, intra-ocular absorption through bulbar conjunctiva is possible, but in this 

case the drug will distribute to the iris and ciliary body, not aqueous humour (Ahmed and Patton, 1987, 

1985; Doane et al., 1978) and most of the drug results to the systemic circulation from sub-conjunctival 

space (Ranta et al., 2010). Thus, systemic absorption via conjunctiva is, in any case, 1-2 orders higher 

than ocular delivery to the aqueous humor. Large fraction of the dose enters the systemic circulation from 

the conjunctival fornix (Urtti et al., 1985), but in addition, part of the drug that flows to the nasal mucosa 

and further (such as the pharynx, mouth, and gastrointestinal tract) may be absorbed to the systemic 

circulation (Chang and Lee, 1987; Urtti and Salminen, 1993).  

 

The rate of solution drainage from the ocular surface is difficult to assess and it depends on many factors, 

such as instilled volume, viscosity and induced lacrimation (Chrai et al., 1973; Conrad et al., 1978). 

Drainage may shorten the contact time of the drug with the cornea and conjunctiva decreasing the ocular 

bioavailability even further. However, it should not affect the ratio of corneal and conjunctival drug 

absorption (Fig. 4). Also, in the case of controlled release systems that reside in the conjunctival fornix, 

the drainage factor is less relevant and numbers in Figure 4 may be directly applicable. For eye drops, 

Figure 4 shows the maximal ocular bioavailability values that can be attained.  

 

A broad range of studies has been conducted in order to improve ocular drug bioavailability. The main 

strategies have been to increase corneal drug permeability and to increase drug retention time at the 

surface of the eye (Chang et al., 1988; Chang and Lee, 1987; Kaur et al., 2004; Urtti et al., 1990, 1985; 

Zhang et al., 2004). Corneal drug permeability is expected to improve ocular trans-corneal 

bioavailability, but the effect is less than one would predict.  For new compounds, corneal and 

conjunctival permeability values can be estimated using the QSPR models from this study and Ramsay 

et al. (2017).  These values, can be conveniently used to estimate the maximal ocular bioavailability that 
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can be attained and potential impact of solution drainage. Thus, this study provides new generalizable 

data and models to augment biopharmaceutical development of new topical ocular medications.   

 

In conclusion, we studied corneal permeability of a compound set with wide chemical space and 

generated a valid QSPR model for prediction of the corneal drug permeation. Follow-up kinetic 

simulations encompassed permeability and flow factors, and provided generalized view on ocular drug 

bioavailability thereby providing tools for ocular drug development.  
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Figure captions 

Figure 1. A schematic diagram of the different steps of QSPR model generation for corneal drug 

permeability prediction. 

 

Figure 2. The PCA score plot of the training set (19 compounds) representing the chemical space, which 

was based on 30 different molecular descriptors. 

 

Figure 3. The predicted versus the experimental corneal drug permeability of the external test set drugs. 

The dotted lines represent a 3-fold error line.  

 

Figure 4. Aqueous humour drug bioavailability (F) versus corneal drug permeability (Papp, CO) for the 25 

drugs of the cassette dose. 

 

Figure 5. Conjunctival permeability (Papp, CJ) (Ramsay et al., 2017) versus corneal permeability (Papp, CO) 

(from Table 1) for 25 drugs. Dotted lines represent: same permeability (1:1) or 9 times larger conjunctival 

than corneal permeability (9:1). 
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