220 research outputs found
One blind and three targeted searches for (sub)millisecond pulsars
We conducted one blind and three targeted searches for millisecond and
submillisecond pulsars. The blind search was conducted within 3deg of the
Galactic plane and at longitudes between 20 and 110deg. It takes 22073
pointings to cover this region, and 5487 different positions in the sky. The
first targeted search was aimed at Galactic globular clusters, the second one
at 24 bright polarized and pointlike radiosources with steep spectra, and the
third at 65 faint polarized and pointlike radiosources. The observations were
conducted at the large radiotelescope of Nancay Observatory, at a frequency
near 1400 MHz. Two successive backends were used, first a VLBI S2 system,
second a digital acquisition board and a PC with large storage capacity
sampling the signal at 50 Mb/s on one bit, over a 24-MHz band and in one
polarization. The bandwidth of acquisition of the second backend was later
increased to 48 MHz and the sampling rate to 100 Mb/s. The survey used the
three successive setups, with respective sensitivities of 3.5, 2.2, and 1.7
mJy. The targeted-search data were obtained with the third setup and reduced
with a method based on the Hough transform, yielding a sensitivity of 0.9 mJy.
The processing of the data was done in slightly differed time by
soft-correlation in all cases. No new short-period millisecond pulsars were
discovered in the different searches. To better understand the null result of
the blind survey, we estimate the probability of detecting one or more
short-period pulsars among a given Galactic population of synthetic pulsars
with our setup: 25% for the actual incomplete survey and 79% if we had
completed the whole survey with a uniform nominal sensitivity of 1.7 mJy. The
alternative of surveying a smaller, presumably more densely populated, region
with a higher sensitivity would have a low return and would be impractical at a
transit instrument. (abridged)Comment: accepted for publication in Astronomy & Astrophysic
A Radio Pulsar Search of the Gamma-ray Binaries LS I +61 303 and LS 5039
LS I +61 303 and LS 5039 are exceptionally rare examples of HMXBs with
MeV-TeV emission, making them two of only five known or proposed "gamma-ray
binaries". There has been disagreement within the literature over whether these
systems are microquasars, with stellar winds accreting onto a compact object to
produce high energy emission and relativistic jets, or whether their emission
properties might be better explained by a relativistic pulsar wind colliding
with the stellar wind. Here we present an attempt to detect radio pulsars in
both systems with the Green Bank Telescope. The upper limits of flux density
are between 4.1-14.5 uJy, and we discuss the null results of the search. Our
spherically symmetric model of the wind of LS 5039 demonstrates that any pulsar
emission will be strongly absorbed by the dense wind unless there is an
evacuated region formed by a relativistic colliding wind shock. LS I +61 303
contains a rapidly rotating Be star whose wind is concentrated near the stellar
equator. As long as the pulsar is not eclipsed by the circumstellar disk or
viewed through the densest wind regions, detecting pulsed emission may be
possible during part of the orbit.Comment: ApJ, in pres
Discovery of 10 pulsars in an Arecibo drift-scan survey
We present the results of a 430-MHz survey for pulsars conducted during the
upgrade to the 305-m Arecibo radio telescope. Our survey covered a total of
1147 square degrees of sky using a drift-scan technique. We detected 33
pulsars, 10 of which were not known prior to the survey observations. The
highlight of the new discoveries is PSR J0407+1607, which has a spin period of
25.7 ms, a characteristic age of 1.5 Gyr and is in a 1.8-yr orbit about a
low-mass (>0.2 Msun) companion. The long orbital period and small eccentricity
(e = 0.0009) make the binary system an important new addition to the ensemble
of binary pulsars suitable to test for violations of the strong equivalence
principle. We also report on our initially unsuccessful attempts to detect
optically the companion to J0407+1607 which imply that its absolute visual
magnitude is > 12.1. If, as expected on evolutionary grounds, the companion is
an He white dwarf, our non-detection imples a cooling age of least 1 Gyr.Comment: 8 pages, 3 figures, accepted for publication in MNRA
The medical student
The Medical Student was published from 1888-1921 by the students of Boston University School of Medicine
The NANOGrav 11-Year Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries
Observations indicate that nearly all galaxies contain supermassive black
holes (SMBHs) at their centers. When galaxies merge, their component black
holes form SMBH binaries (SMBHBs), which emit low-frequency gravitational waves
(GWs) that can be detected by pulsar timing arrays (PTAs). We have searched the
recently-released North American Nanohertz Observatory for Gravitational Waves
(NANOGrav) 11-year data set for GWs from individual SMBHBs in circular orbits.
As we did not find strong evidence for GWs in our data, we placed 95\% upper
limits on the strength of GWs from such sources as a function of GW frequency
and sky location. We placed a sky-averaged upper limit on the GW strain of at nHz. We also developed a
technique to determine the significance of a particular signal in each pulsar
using ``dropout' parameters as a way of identifying spurious signals in
measurements from individual pulsars. We used our upper limits on the GW strain
to place lower limits on the distances to individual SMBHBs. At the
most-sensitive sky location, we ruled out SMBHBs emitting GWs with
nHz within 120 Mpc for , and
within 5.5 Gpc for . We also determined that
there are no SMBHBs with emitting
GWs in the Virgo Cluster. Finally, we estimated the number of potentially
detectable sources given our current strain upper limits based on galaxies in
Two Micron All-Sky Survey (2MASS) and merger rates from the Illustris
cosmological simulation project. Only 34 out of 75,000 realizations of the
local Universe contained a detectable source, from which we concluded it was
unsurprising that we did not detect any individual sources given our current
sensitivity to GWs.Comment: 10 pages, 11 figures. Accepted by Astrophysical Journal. Please send
any comments/questions to S. J. Vigeland ([email protected]
Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set
When galaxies merge, the supermassive black holes in their centers may form
binaries and, during the process of merger, emit low-frequency gravitational
radiation in the process. In this paper we consider the galaxy 3C66B, which was
used as the target of the first multi-messenger search for gravitational waves.
Due to the observed periodicities present in the photometric and astrometric
data of the source of the source, it has been theorized to contain a
supermassive black hole binary. Its apparent 1.05-year orbital period would
place the gravitational wave emission directly in the pulsar timing band. Since
the first pulsar timing array study of 3C66B, revised models of the source have
been published, and timing array sensitivities and techniques have improved
dramatically. With these advances, we further constrain the chirp mass of the
potential supermassive black hole binary in 3C66B to less than using data from the NANOGrav 11-year data set. This
upper limit provides a factor of 1.6 improvement over previous limits, and a
factor of 4.3 over the first search done. Nevertheless, the most recent orbital
model for the source is still consistent with our limit from pulsar timing
array data. In addition, we are able to quantify the improvement made by the
inclusion of source properties gleaned from electromagnetic data to `blind'
pulsar timing array searches. With these methods, it is apparent that it is not
necessary to obtain exact a priori knowledge of the period of a binary to gain
meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap
Gravitational Waves From Known Pulsars: Results From The Initial Detector Era
We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom
Gravitational Radiation from Compact Binary Pulsars
An outstanding question in modern Physics is whether general relativity (GR)
is a complete description of gravity among bodies at macroscopic scales.
Currently, the best experiments supporting this hypothesis are based on
high-precision timing of radio pulsars. This chapter reviews recent advances in
the field with a focus on compact binary millisecond pulsars with white-dwarf
(WD) companions. These systems - if modeled properly - provide an unparalleled
test ground for physically motivated alternatives to GR that deviate
significantly in the strong-field regime. Recent improvements in observational
techniques and advances in our understanding of WD interiors have enabled a
series of precise mass measurements in such systems. These masses, combined
with high-precision radio timing of the pulsars, result to stringent
constraints on the radiative properties of gravity, qualitatively very
different from what was available in the past.Comment: Short review chapter to appear in "Gravitational Wave Astrophysics"
by Springer-Verlag, edited by Carlos F. Sopuerta; v3: a few major corrections
and updated references. Comments are welcome
The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars
We present high-precision timing data over time spans of up to 11 years for 45 millisecond pulsars observed as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project, aimed at detecting and characterizing low-frequency gravitational waves. The pulsars were observed with the Arecibo Observatory and/or the Green Bank Telescope at frequencies ranging from 327 MHz to 2.3 GHz. Most pulsars were observed with approximately monthly cadence, and six high-timing-precision pulsars were observed weekly. All were observed at widely separated frequencies at each observing epoch in order to fit for time-variable dispersion delays. We describe our methods for data processing, time-of-arrival (TOA) calculation, and the implementation of a new, automated method for removing outlier TOAs. We fit a timing model for each pulsar that includes spin, astrometric, and (for binary pulsars) orbital parameters; time-variable dispersion delays; and parameters that quantify pulse-profile evolution with frequency. The timing solutions provide three new parallax measurements, two new Shapiro delay measurements, and two new measurements of significant orbital-period variations. We fit models that characterize sources of noise for each pulsar. We find that 11 pulsars show significant red noise, with generally smaller spectral indices than typically measured for non-recycled pulsars, possibly suggesting a different origin. A companion paper uses these data to constrain the strength of the gravitational-wave background
- …