5,058 research outputs found
Recommended from our members
Disrupted CXCR2 Signaling in Oligodendroglia Lineage Cells Enhances Myelin Repair in a Viral Model of Multiple Sclerosis.
CXCR2 is a chemokine receptor expressed on oligodendroglia that has been implicated in the pathogenesis of neuroinflammatory demyelinating diseases as well as enhancement of the migration, proliferation, and myelin production by oligodendroglia. Using an inducible proteolipid protein (Plp) promoter-driven Cre-loxP recombination system, we were able to assess how timed ablation of Cxcr2 in oligodendroglia affected disease following intracranial infection with the neurotropic JHM strain of mouse hepatitis virus (JHMV). Generation of Plp-Cre-ER(T)::Cxcr2flox/flox transgenic mice (termed Cxcr2-CKO mice) allows for Cxcr2 to be silenced in oligodendrocytes in adult mice following treatment with tamoxifen. Ablation of oligodendroglia Cxcr2 did not influence clinical severity in response to intracranial infection with JHMV. Infiltration of activated T cells or myeloid cells into the central nervous system (CNS) was not affected, nor was the ability to control viral infection. In addition, the severity of demyelination was similar between tamoxifen-treated mice and vehicle-treated controls. Notably, deletion of Cxcr2 resulted in increased remyelination, as assessed by g-ratio (the ratio of the inner axonal diameter to the total outer fiber diameter) calculation, compared to that in vehicle-treated control mice. Collectively, our findings argue that CXCR2 signaling in oligodendroglia is dispensable with regard to contributing to neuroinflammation, but its deletion enhances remyelination in a preclinical model of the human demyelinating disease multiple sclerosis (MS).IMPORTANCE Signaling through the chemokine receptor CXCR2 in oligodendroglia is important for developmental myelination in rodents, while chemical inhibition or nonspecific genetic deletion of CXCR2 appears to augment myelin repair in animal models of the human demyelinating disease multiple sclerosis (MS). To better understand the biology of CXCR2 signaling on oligodendroglia, we generated transgenic mice in which Cxcr2 is selectively ablated in oligodendroglia upon treatment with tamoxifen. Using a viral model of neuroinflammation and demyelination, we demonstrate that genetic silencing of CXCR2 on oligodendroglia did not affect clinical disease, neuroinflammation, or demyelination, yet there was increased remyelination. These findings support and extend previous findings suggesting that targeting CXCR2 may offer a therapeutic avenue for enhancing remyelination in patients with demyelinating diseases
Traumatic brain injury in hTau model mice: Enhanced acute macrophage response and altered long-term recovery
TBI induces widespread neuroinflammation and accumulation of microtubule associated protein tau (MAPT) - two key pathological features of tauopathies. This study sought to characterize the microglial/macrophage response to TBI in genomic-based MAPT transgenic mice in a Mapt knockout background (called hTau). Two-month-old hTau and age-matched control male and female mice received a single lateral fluid percussion TBI or sham injury. Separate groups of mice were aged to an acute (3 days post-injury [DPI]) or chronic (135 DPI) post-injury time point. As judged by tissue immunostaining for macrophage markers, microglial/macrophage response to TBI was enhanced at 3 DPI in hTau mice compared to control TBI and sham mice. However, MAPT phosphorylation increased in hTau mice regardless of injury group. Flow cytometric analysis revealed distinct populations of microglia and macrophages within all groups at 135 DPI. Unexpectedly, microglial reactivity was significantly reduced in hTau TBI mice compared to all other groups. Instead, hTau TBI mice showed a persistent macrophage response. In addition, TBI enhanced MAPT pathology in the temporal cortex and hippocampus of hTau TBI mice compared to controls 135 DPI. A battery of behavioral test revealed that TBI in hTau mice resulted in compromised use of spatial search strategies to complete a water maze task despite lack of motor or visual deficits. Collectively, these data indicate that the presence of wild-type human tau alters the microglial/macrophage response to a single TBI, induces delayed, region-specific MAPT pathology, and alters cognitive recovery; however, the causal relationship between these events remains unclear. These results highlight the potential significance of communication between MAPT and microglia/macrophages following TBI and emphasize the role of neuroinflammation in post-injury recovery
Role of the Fractalkine Receptor in CNS Autoimmune Inflammation: New Approach Utilizing a Mouse Model Expressing the Human CX3CR1
Multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS) is the leading cause of non-traumatic neurological disability in young adults. Immune mediated destruction of myelin and oligodendrocytes is considered the primary pathology of MS, but progressive axonal loss is the major cause of neurological disability. In an effort to understand microglia function during CNS inflammation, our laboratory focuses on the fractalkine/CX3CR1 signaling as a regulator of microglia neurotoxicity in various models of neurodegeneration. Fractalkine (FKN) is a transmembrane chemokine expressed in the CNS by neurons and signals through its unique receptor CX3CR1 present in microglia. During experimental autoimmune encephalomyelitis (EAE), CX3CR1 deficiency confers exacerbated disease defined by severe inflammation and neuronal loss. The CX3CR1 human polymorphism I249/M280 present in ∼20% of the population exhibits reduced adhesion for FKN conferring defective signaling whose role in microglia function and influence on neurons during MS remains unsolved. The aim of this study is to assess the effect of weaker signaling through hCX3CR1I249/M280 during EAE. We hypothesize that dysregulated microglial responses due to impaired CX3CR1 signaling enhance neuronal/axonal damage. We generated an animal model replacing the mouse CX3CR1 locus for the hCX3CR1I249/M280 variant. Upon EAE induction, these mice exhibited exacerbated EAE correlating with severe inflammation and neuronal loss. We also observed that mice with aberrant CX3CR1 signaling are unable to produce FKN and ciliary neurotrophic factor during EAE in contrast to wild type mice. Our results provide validation of defective function of the hCX3CR1I249/M280 variant and the foundation to broaden the understanding of microglia dysfunction during neuroinflammation. © 2018 Cardona et al
Recommended from our members
Cx3cr1-deficient microglia exhibit a premature aging transcriptome.
CX3CR1, one of the highest expressed genes in microglia in mice and humans, is implicated in numerous microglial functions. However, the molecular mechanisms underlying Cx3cr1 signaling are not well understood. Here, we analyzed transcriptomes of Cx3cr1-deficient microglia under varying conditions by RNA-sequencing (RNA-seq). In 2-mo-old mice, Cx3cr1 deletion resulted in the down-regulation of a subset of immune-related genes, without substantial epigenetic changes in markers of active chromatin. Surprisingly, Cx3cr1-deficient microglia from young mice exhibited a transcriptome consistent with that of aged Cx3cr1-sufficient animals, suggesting a premature aging transcriptomic signature. Immunohistochemical analysis of microglia in young and aged mice revealed that loss of Cx3cr1 modulates microglial morphology in a comparable fashion. Our results suggest that CX3CR1 may regulate microglial function in part by modulating the expression levels of a subset of inflammatory genes during chronological aging, making Cx3cr1-deficient mice useful for studying aged microglia
Phenotypic features effectively stratify risk for advanced colorectal neoplasia in asymptomatic adults
poster abstractBackground: While colorectal cancer (CRC) screening is effective and cost-effective for reducing CRC incidence and mortality, it is underutilized (nearly 40% of U.S. adults are either not current with or have never been screened), inefficient (low-risk persons undergo colonoscopy), and costly to the U.S. health care system. A simple and effective way of stratifying risk for advanced neoplasia (AN – CRC and advanced, precancerous polyps) could improve the efficiency and uptake of screening by tailoring colonoscopy toward persons at highrisk and giving low-risk persons less-invasive options. Although several risk factors for AN have been identified, they are not used in clinical practice in part because of inability to integrate the factors to produce a risk estimate.
Objective: To derive and validate a risk index for AN (CRC, advanced adenomas, serrated polyps >= 1 cm) anywhere in the colorectum.
Methods: We measured socio-demographic features, medical and family history, lifestyle factors, and physical features in 50-80 year old persons who underwent first-time screening colonoscopy between December 2004 and September 2011, and linked these factors to endoscopic and histologic findings. Using logistic regression, we derived a risk equation on a randomly selected 2/3s of the sample. A 12-variable model was selected based on optimal statistical metrics. Based on model coefficients, we assigned points to each variable to create a risk score, which ranged from -13 to 8. Scores with comparable magnitudes of risk were collapsed into 3 risk categories. The model was tested on the remaining third of the sample.
Results: Among 3025 subjects in the derivation set (mean age 57.3 ± 6.5 years; 52% women), the prevalence of AN was 9.4% (including 26 CRCs). Model variables include age, sex, smoking, ethanol use, marital status, NSAID and aspirin use, physical activity, education level, and metabolic syndrome (P-value for fit = 0.09; cstatistic=0.78). Respective risks of AN in the low- (scores of -13 to -5), intermediate- (scores of -4 to 2) and high- (scores of 3 to 12) were 1.52% (95%, 0.07-2.8%), 6.86%, and 26.8% (P-value for trend < 0.001), with respective cohort proportions of 23%, 59% and 18%. Ten low-risk subjects had AN (0 CRCs, 6 distal). Based on finding a distal sentinel polyp, sigmoidoscopy to the descending colon would have detected 7(70%) ANs. Among the 1475 subjects in the test set (mean age 57.2 ± 6.5 years; 52% women), AN prevalence was 8.4%. Risk of AN in the low-risk subgroup was 2.73% (CI, 1.25-5.11%) and was 5.57% and 25.4% in the intermediate- and high-risk subgroups, respectively (P<0.001), with cohort proportions of 23%, 59%, and 18%. Nine low-risk subjects had AN (0 CRCs, 5 distal, 6 detectable by sigmoidoscopy.
Conclusion: This new risk index effectively stratifies the risk for AN among asymptomatic adults, identifying a low-risk subgroup of 23% that may be screened effectively and efficiently with tests other than colonoscopy and a high-risk subgroup of 18% in which colonoscopy may be preferable. If validated in other settings, this index could increase both the efficiency and uptake of CRC screening
MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases.
Low-grade systemic inflammation is often associated with metabolic syndrome, which plays a critical role in the development of the obesity-associated inflammatory diseases, including insulin resistance and atherosclerosis. Here, we investigate how Toll-like receptor-MyD88 signaling in myeloid and endothelial cells coordinately participates in the initiation and progression of high fat diet-induced systemic inflammation and metabolic inflammatory diseases. MyD88 deficiency in myeloid cells inhibits macrophage recruitment to adipose tissue and their switch to an M1-like phenotype. This is accompanied by substantially reduced diet-induced systemic inflammation, insulin resistance, and atherosclerosis. MyD88 deficiency in endothelial cells results in a moderate reduction in diet-induced adipose macrophage infiltration and M1 polarization, selective insulin sensitivity in adipose tissue, and amelioration of spontaneous atherosclerosis. Both in vivo and ex vivo studies suggest that MyD88-dependent GM-CSF production from the endothelial cells might play a critical role in the initiation of obesity-associated inflammation and development of atherosclerosis by priming the monocytes in the adipose and arterial tissues to differentiate into M1-like inflammatory macrophages. Collectively, these results implicate a critical MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases
Natalizumab affects T-cell phenotype in multiple sclerosis: implications for JCV reactivation
The anti-CD49d monoclonal antibody natalizumab is currently an effective therapy against the relapsing-remitting form of multiple sclerosis (RRMS). Natalizumab therapeutic efficacy is limited by the reactivation of the John Cunningham polyomavirus (JCV) and development of progressive multifocal leukoencephalopathy (PML). To correlate natalizumab-induced phenotypic modifications of peripheral blood T-lymphocytes with JCV reactivation, JCV-specific antibodies (serum), JCV-DNA (blood and urine), CD49d expression and relative abundance of peripheral blood T-lymphocyte subsets were longitudinally assessed in 26 natalizumab-treated RRMS patients. Statistical analyses were performed using GraphPad Prism and R. Natalizumab treatment reduced CD49d expression on memory and effector subsets of peripheral blood T-lymphocytes. Moreover, accumulation of peripheral blood CD8+ memory and effector cells was observed after 12 and 24 months of treatment. CD4+ and CD8+ T-lymphocyte immune-activation was increased after 24 months of treatment. Higher percentages of CD8+ effectors were observed in subjects with detectable JCV-DNA. Natalizumab reduces CD49d expression on CD8+ T-lymphocyte memory and effector subsets, limiting their migration to the central nervous system and determining their accumulation in peripheral blood. Impairment of central nervous system immune surveillance and reactivation of latent JCV, can explain the increased risk of PML development in natalizumab-treated RRMS subjects
TLR7-mediated skin inflammation remotely triggers chemokine expression and leukocyte accumulation in the brain
Background:
The relationship between the brain and the immune system has become increasingly topical as, although it is immune-specialised, the CNS is not free from the influences of the immune system. Recent data indicate that peripheral immune stimulation can significantly affect the CNS. But the mechanisms underpinning this relationship remain unclear. The standard approach to understanding this relationship has relied on systemic immune activation using bacterial components, finding that immune mediators, such as cytokines, can have a significant effect on brain function and behaviour. More rarely have studies used disease models that are representative of human disorders.
Methods:
Here we use a well-characterised animal model of psoriasis-like skin inflammation—imiquimod—to investigate the effects of tissue-specific peripheral inflammation on the brain. We used full genome array, flow cytometry analysis of immune cell infiltration, doublecortin staining for neural precursor cells and a behavioural read-out exploiting natural burrowing behaviour.
Results:
We found that a number of genes are upregulated in the brain following treatment, amongst which is a subset of inflammatory chemokines (CCL3, CCL5, CCL9, CXCL10, CXCL13, CXCL16 and CCR5). Strikingly, this model induced the infiltration of a number of immune cell subsets into the brain parenchyma, including T cells, NK cells and myeloid cells, along with a reduction in neurogenesis and a suppression of burrowing activity.
Conclusions:
These findings demonstrate that cutaneous, peripheral immune stimulation is associated with significant leukocyte infiltration into the brain and suggest that chemokines may be amongst the key mediators driving this response
Multigradient field-active contour model for multilayer boundary detection of ultrasound rectal wall image
Extraction and reconstruction of rectal wall structures from an ultrasound image is helpful for surgeons in rectal clinical diagnosis and 3-D reconstruction of rectal structures from ultrasound images. The primary task is to extract the boundary of the muscular layers on the rectal wall. However, due to the low SNR from ultrasound imaging and the thin muscular layer structure of the rectum, this boundary detection task remains a challenge. An active contour model is an effective high-level model, which has been used successfully to aid the tasks of object representation and recognition in many image-processing applications. We present a novel multigradient field active contour algorithm with an extended ability for multiple-object detection, which overcomes some limitations of ordinary active contour models—"snakes." The core part in the algorithm is the proposal of multigradient vector fields, which are used to replace image forces in kinetic function for alternative constraints on the deformation of active contour, thereby partially solving the initialization limitation of active contour for rectal wall boundary detection. An adaptive expanding force is also added to the model to help the active contour go through the homogenous region in the image. The efficacy of the model is explained and tested on the boundary detection of a ring-shaped image, a synthetic image, and an ultrasound image. The experimental results show that the proposed multigradient field-active contour is feasible for multilayer boundary detection of rectal wal
- …
