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Abstract. Extraction and reconstruction of rectal wall structures
from an ultrasound image is helpful for surgeons in rectal clinical
diagnosis and 3-D reconstruction of rectal structures from ultra-
sound images. The primary task is to extract the boundary of the
muscular layers on the rectal wall. However, due to the low SNR
from ultrasound imaging and the thin muscular layer structure of the
rectum, this boundary detection task remains a challenge. An active
contour model is an effective high-level model, which has been used
successfully to aid the tasks of object representation and recognition
in many image-processing applications. We present a novel multi-
gradient field active contour algorithm with an extended ability for
multiple-object detection, which overcomes some limitations of ordi-
nary active contour models—“snakes.” The core part in the algo-
rithm is the proposal of multigradient vector fields, which are used to
replace image forces in kinetic function for alternative constraints on
the deformation of active contour, thereby partially solving the initial-
ization limitation of active contour for rectal wall boundary detection.
An adaptive expanding force is also added to the model to help the
active contour go through the homogenous region in the image. The
efficacy of the model is explained and tested on the boundary de-
tection of a ring-shaped image, a synthetic image, and an ultra-
sound image. The experimental results show that the proposed mul-
tigradient field-active contour is feasible for multilayer boundary
detection of rectal wall. © 2005 SPIE and IS&T.
�DOI: 10.1117/1.1992500�

1 Introduction
Endoscopic ultrasonography1,2 �EUS� has become one of
the common techniques for screening of the rectum and
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early staging of rectal tumors in the current clinical diag-
nosis, because of its advantage in providing a sequence of
cross-sectional ultrasound images of the rectum.3,4 On these
cross-sectional images, the anatomical structure of the or-
gans and the situation of potential tumors can be assessed.
However, the problem with the current EUS machine is that
the machine provides only a sequence of images displayed
to a surgeon, thereby leaving much laborious follow-up
work concerning image understanding and analysis for the
surgeon to complete. For example, to extract structural in-
formation of the rectal wall and further the position infor-
mation of the possible rectal tumor, a surgeon usually must
view the ultrasound images slice by slice, and finally form
a full structural picture of that rectum in his mind. The
diagnostic result such as tumor staging5–7 can be done only
by this information built in his head.

Although some recent commercial products have had the
ability to help surgeons visualize the 3-D ultrasound rectal
image, to our knowledge, in the image-processing area,
there are still no published methods on the extraction and
analysis of the rectal wall structure. Today, even simple
manual outlining of the method for rectal layer description
is not applied in clinical practice. It is still a time-
consuming and tedious work for surgeons to perform object
recognition and information extraction. Thus, to develop a
set of algorithm to help the information extraction of the
anatomical structure of the rectum from an ultrasound im-
age will be meaningful for reducing the surgeon’s repetitive

work.
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Figure 1 shows a cross-sectional ultrasound image of a
rectum with a tumor, which consists of three main parts:
balloon area, rectal wall area, and tissue area. Today, with a
10-MHz ultrasonic probe, surgeons can distinguish five
muscular layers of a rectal wall by their eyes from an un-
processed ultrasound image. These are the lamina propria,
the muscularis mucosae �first muscle layer�, the submu-
cosa, the muscularis propria �second muscle layer�, and the
serosa. From the ultrasound image feature point of view,
the central part is the balloon area with a gray-level value
of low intensity. Five muscular layers can be distinguished
by their different gray-level values. For example, the
lamina propria has higher intensity than the muscularis mu-
cosae layer, thus showing higher brightness.

For clinical application, rectal wall boundary detection,
tumor detection, and further 3-D reconstruction of rectum
and tumor staging is meaningful for intuitive 3-D visualiza-
tion and quantitative analysis of the rectum and will be a
grand goal. In this paper, our aim is to set up a feasible
algorithm to perform the boundary detection of muscular
layers of the rectum from its ultrasound image. The ob-
tained data will be helpful for the further quantitative
analysis and 3-D reconstruction, which will display a visual
anatomical structure of the rectum for surgeons. The
boundary detection of the rectal wall muscular layer is dif-
ficult because of the low resolution and contrast speckle
structure of ultrasound images, and too thin a layer struc-
ture of the rectum. Therefore, conventional approaches,
such as low-level edge detection, edge linking methods,
etc., are not suitable for our task. Some other high-level
methods for their specific uses may not meet our demand
for multilayer detection of the rectal structure.8,9

Recently, the active contour model “snakes” is a much
appreciated algorithm used by many researchers for bound-

Fig. 1 Rectal ultrasound image.
ary detection in image processing. The name “active con-
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tour” originated from the elastic theory in physics. The pro-
cedure of object matching is a searching procedure that
uses the optimal approximation theory to obtain the energy
minimum. The shape and the evolution progress of one
active contour model have the characteristics of geometry,
physics, and optimal approximation. After studying its per-
formance, we found its basic characteristics meet the re-
quirement of our goal. With the “snakes” method, the ana-
tomical knowledge of the rectum can be integrated into the
boundary-detecting procedures. And benefiting from the
characteristic of closed contour, we can obtain a fully
closed boundary that we required in this project though
some parts on the layer’s boundary may be lost. Further, the
“snakes” method can implement the boundary detection
and object recognition at the same time, which cannot be
done by a low-level method.

The “snakes” algorithm was originally developed by
Kass et al.10 in 1987. After that, a series of papers on modi-
fication and improvement of the original snakes algorithm
were published. Amini et al. pointed out some of the prob-
lems with this approach, such as instability and a tendency
for points to bunch up a strong portion of an edge. They
proposed an algorithm for the snakes model using dynamic
programming.11 This algorithm is more stable and enables
the inclusion of hard constraints in addition to the soft con-
straints inherent in the formulation of the functional. Fur-
ther, a fast algorithm called a “greedy algorithm” for snakes
was proposed, which was stable, flexible, enabled hard con-
straints, and ran much faster than the dynamic program-
ming method.12 A finite-element algorithm was also used to
make the solution of the model faster and more stable.
Menet et al. gave a B-snake model, which was built from
the initial curve approximation by a parametric B-spline.13

Based on the elementary characteristics of B-spline,
B-snake is capable of doing the local and continuity control
and can solve the “corner” problem. A similar work based
on B-spline can be found in Ref. 14. Cohen introduced a
new model for snakes through adding a new external force,
which makes the curve behave like a balloon to solve the
“initial sensitivity problem.”15,16 Xu and Segawa gave a
robust active contour model.17 They highlighted a problem
of the snake model in that the performance of the model
depended on proper internal parameters and the initial con-
tour position. To solve this problem, they proposed adding
another energy term that could resist the internal normal
force and make the contour keep still regardless of the cur-
rent contour shape. Gradient vector flow is a novel method
to solve the initial position problem.18,19 The main charac-
teristic of the gradient vector flow is that it extends the
gradient map farther away form the edges and into homo-
geneous regions using a computational diffusion process
algorithm. Cañero et al. used a generalized gradient vector
flow biplane snakes in his coronary vessel application.20

United snakes algorithm is a combination of the original
snakes algorithm and live-wire algorithm to locate the ini-
tial position of an active contour.21 The snakes in Ref. 22
aimed at solving the oscillating problem. There are also a
many works to apply the snakes method on image
segmentation,23–25 motion tracking,26–30 and matching.31–33

In general, the algorithm improvement related to snakes
mainly focused on the problems of stability, initialization,

and convergence. For an over review, see Ref. 34.
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We have known, because of some inherent limitations,
that snakes can not solve the entire problem of finding con-
tours in images; rather, they depends on other mechanisms
such as interaction with a user, interaction with some
higher level image understanding process, or information
from image data adjacent in time or space. In our project,
one problem is the initialization of the snakes. To detect the
boundary of each layer, if a conventional algorithm was
used, each initial position should be set manually in the
capture range of each boundary. For example, for detection
of six boundaries of five muscular layers of the rectum, six
initial positions of the snakes should be set, which is a very
time-consuming work for a surgeon. In this paper, we focus
on how solving this kind of “initial problem.”

In this paper, we propose a novel multigradient field
active contour to solve the preceding limitations.35,36 The
following are contributions in this paper:

1. We propose a multigradient field concept and add it
into the traditional snakes.

2. We propose a multigradient field algorithm, which is
capable of multiple boundaries detection by an active
contour given one initial position in our project.

3. We introduce a boundary detection technique into the
anatomical structure extraction from sequence of rec-
tal wall ultrasound images, which is helpful for clini-
cal image understanding and further 3-D reconstruc-
tion of rectum structure from ultrasound images.

2 Method

Muscular layer detection of the rectal wall requires several
tasks to be completed at the same time, including border
detection and object recognition. Not only the current
boundary must be detected, but there is also necessary to
know which layer this boundary belongs to in a rectal wall
image. An intuitive central thought in this paper is to first
place an initial contour in the balloon area of the rectal
wall, then deform this active contour and obtain the inner-
most layer’s boundary, which is also called inner boundary
of the first muscular layer. Using this boundary as the new
model we continuously expand it to extract the outer
boundary of the first layer �or inner boundary of the second
muscular layer�. Repeating the same approach, each layer
can be detected progressively. The advantage of this
method is that it can overcome the limitation of the con-
ventional snakes algorithm that must place each initial con-
tour in the capture range of each specific muscular layer
boundary.

Through analyzing the gradient vector field of the rectal
wall image, we found the whole procedure of extracting the
boundaries is more complicated than it appears to be. Ac-
tually, the active contour model must have the capability to
solve such more complicated problems. It must have the
capability to solve such problem as

1. In a homogeneous region like the balloon area, how
do we deform the active contour model to enter the
gradient capture range of the inner boundary?

2. How do we control the deformation of the model and
carefully make it not cross each layer or escape from

the attraction of the gradient field?
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3. When using a current obtained boundary as a new
model to search for the next layer, how do we over-
come the attraction of the current gradient field?

For solving all these problems, a novel boundary detec-
tion method is proposed for the realization of the muscular
layer detection of rectal wall.

2.1 Multigradient Field-Active Contour Model
Here, a novel active contour model based on the framework
of traditional active contour model snakes is set up. The
energy function of the improved active contour EIAC is de-
fined as follows:

EIAC =� Eint�v�s�� + wimageEimage�v�s��

+ wadpt�v�s��Eadpt�v�s�� ds , �1�

where v�s�= �x�s� ,y�s�� represents parametric vector of the
active contour model, s is the arc length of the contour,
wimage and wadpt are weights, and Eint is an internal energy
of the active contour. This term is the same as that in the
traditional snakes, which is used to compose the regularity
of the curve. Here Eimage is image energy, which is an ex-
ternal constraint that comes from the image features so that
it takes on its smaller values at the features of interest. The
force derived from it is constrained by our multigradient
field, which is totally different from that in the traditional
snakes. Adaptive expanding energy Eadpt is an external en-
ergy. The corresponding force derived from it can make the
active contour model expand with an adaptive feature. This
is strongest in the homogenous region that has no gradient
field, and smallest when near to the desired edges. Detailed
features of the last two energy terms will be explained in
the following three subsections.

2.2 Numerical Solution of the Multigradient Field
Active Contour Model

The goal of the solution to the model is to find a contour
that minimizes Eq. �1� driven by the internal energy, image
energy, and expanding energy. In this paper, we choose
using the kinetic function rather the preceding energy func-
tion to deform the active contour, thus we should get the
corresponding force equation as well as its corresponding
numerical solution. By using the calculus of variations and
solving the Euler equations, we can give the minimization
of Eq. �1�. Because the form of our energy function is simi-
lar to snakes, the numerical solution procedure is the same.
Here, we just list several important equations to facilitate
further discussion. The detailed procedure of numerical so-
lution can be found in Ref. 10.

The Euler equations obtained from the Eq. �1� can be
described as following two dependent parts, assuming that
��s�, ��s�, wimage�v�s��, and wadpt�v�s�� are constant:

�

�s
��� �x�s�

�s
�� −

�

�s2��� �2x�s�
�s2 �� − wimage

�Eimage�x,y�
�x

− wadpt
�Eadpt�x,y�

= 0, �2a�

�x
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�

�s
�� �y�s�

�s
�� −

�

�s2�� �2y�s�
�s2 �� − wimage

�Eimage�x,y�
�y

− wadpt
�Eadpt�x,y�

�y
= 0. �2b�

Finite differences are used to approximate the first and sec-
ond differential terms of a function. Substituting these in
Eqs. �2a� and �2b� and minimizing the energy function of
the active contour, a pair of systems of the equations for
finding x and y coordinates can be achieved. Each node on
the active contour can be converted to a vector notation
with vi= �xi ,yi�. The active contour is made dynamically by
treating each vector vi as the function of time t.

By an explicit Euler method, the final solutions of the
Eqs. �2a� and �2b� can be expressed in matrix forms as
follows:

xt = �C + lI�−1�lxt−1 − wimagef img�x�xt−1,yt−1�

+ wadptfadpt�x�xt−1,yt−1�� , �3a�

yt = �C + lI�−1�lyt−1 − wimagef img�y�xt−1,yt−1�

+ wadptfadpt�y�xt−1,yt−1�� , �3b�

where f img�x=�Eimage�x ,y� /�xt−1 and f img�y�i�
=�Eimage�x ,y� /�yt−1 are image forces, fadpt�x and fadpt�y are
adaptive external forces, l is a step size, I is a unit matrix, xt
is the x coordinate of the contour node at the current time t,
xt−1 is the x coordinate at the last time t−1, and C is a
pentadiagonal matrix that includes the shape weighting co-
efficients ��s� and ��s�. Considering that the derivative of
the external forces requires changing C at each iterative, so
we achieve faster iteration by simply assuming the external
forces constant during a time step.

Equations �3� are different from the conventional
snakes. Here, two items, a multigradient field image force
and an adaptive expanding force, are introduced for the
purpose of multilayer boundary detection. We use Eqs. �3�
to explain the multigradient field concept and show how to
apply multigradient field force and adaptive expanding
force in our active contour on different phase of the
multiple-layer detection.

2.3 Adaptive Expanding Force
The expanding force is used to make the contour deform
across the homogeneous region of image. The adaptive
characteristic adaptively decreases the value of the force
when the active contour detects an increase of the gradient
field. Subsequent decrease of the adaptive force reduce the
step of further expansion and avoid running over the edge.
This also reduces the moving steps of those segments on
the contour that are located in a homogenous area. The
adaptive force is defined by,

fadpt�v�s�� =
1

	
i=1
n � � I�x�i�,y�i����/n + T

, �4�

where n is number of nodes on the active contour, and T is
a threshold to keep the force bounded while the sum of
gradient is near to zero. This means the adaptive force is an

inverse value of the sum of gradient magnitudes in the im-

Journal of Electronic Imaging 033010-

From: http://electronicimaging.spiedigitallibrary.org/ on 10/13/2015 Terms of
age where the active contour locates. An adaptive expand-
ing force has a flexible use in different phase of deforma-
tion of the contour during the boundary detection. A more
detailed explanation of its practical use is given in the fol-
lowing section.

2.4 Multigradient Vector Field
Our original idea is to detect the rectal muscular layers one
by one from inner to outer by an unique active contour,
which is initially placed at the balloon region. When one
boundary of a layer is detected, the algorithm should be
able to drive the active contour to expand again and search
the outer boundary of the layer automatically. The tradi-
tional snakes algorithm cannot meet this requirement, be-
cause after finding a boundary it has arrived at an energy
minimum and cannot deform again. That is the intrinsic
feature of the snakes method.

According to our requirement, after an active contour
has extracted the inner boundary of the first layer and gone
into the phase of the outer boundary searching of the same
layer, it would be best if the current image constraints for
the active contour could vanish. This would enable the ac-
tive model to expand again and search for the next energy
minimum. One straightforward idea is to increase the ex-
panding force until it is greater than the synthetic forces
from the combination of internal force and current image
force; thus, this external force can cause this contour to
escape from the current local minimal energy constraints.
This, however, is not an optimal method, because relying
on this kind of external force would run a risk that the
whole model would become more unstable and uncontrol-
lable. A possible result is that the contour may run over the
next boundary. The adaptive expanding force is only tai-
lored to undertake the contour’s expanding task in the ho-
mogenous region in our algorithm.

By analyzing the energy function and kinetic function of
traditional snakes, from Eqs. �2a� and �2b�, we can find that
image energy is a gradient vector field after performing a
gradient operation on the original image. The image force,
which drives the deformation of the active contour, is a
gradient vector field obtained from the gradient operation
on the image energy component. It means that image force
is a second-order derivative component derived from the
original image.

To explain the multigradient field algorithm, two gradi-
ent vector fields are defined to clarify the purpose. Here, a
ring-shaped image �a white ring on a black background

Fig. 2 Comparison of first-order gradient image and second-order
gradient image.
�Fig. 2�a��� is used as an example to illustrate these two
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concepts:

1. First-order gradient vector field �FOGVF�: Gradient
vector field obtained from the gradient operation on
an original image. The corresponding image is called
the first-order gradient image �map� IFOGM�i , j�, as
shown in Fig. 2�b�.

2. Second-order gradient vector field �SOGVF�: Gradi-
ent vector field obtained from the gradient operation
on the first-order gradient map. The corresponding
image is called second-order gradient image �map�
ISOGM�i , j� �Fig. 2�c��.

Figure 3 shows these two corresponding gradient vector
fields. From Fig. 3�b�, it is found that the edge of the ring is
constrained by two opposite gradient vector fields—
centripetal vectors and centrifugal vectors, which are actu-
ally the characteristics from the second-order gradient field.
On one hand, just these two vector fields, which act as
image forces, constrain the active contour’s deformation.
Under these constraints, the active contour can find the
edge of the object when arriving at the minimum energy.
On the other hand, if the centripetal force exists, it is just
the force that prevents this active contour from expanding
and deforming again. Thus, on the second-order gradient
field, we cannot hope to use the gradient force to help the
contour escape from its current energy minimum.

However, through viewing the first-order gradient field
�Fig. 3�a��, we can find that the centripetal gradient vectors
in the inner boundary disappear because of the features of
the first-order gradient field that gradient vectors always
point from low gray level to high gray level on the object’s
boundary. The exiting centrifugal gradient field is exactly
the image force we require that can be used to push the
active contour expand and escape from the gravity of the
inner boundary. One important point is that the orientation
of the first-order-gradient vector will be totally different
when we face an inverse image with a black ring on a white
background �Fig. 4�a��. From Fig. 4�b�, we can find that the
orientation of the gradient vector on the inner boundary is
centripetal. For this kind of situation, we should use a dif-
ferent gradient field as the image force, which is obtained
not from the original image but from the inverse map of the
original image. Here, the inverse map of the image means
whose gray values are assigned their mirror transparency.
On an inverse map of the original image, the orientation of
the gradient vectors on the inner boundary becomes cen-

Fig. 3 FOGVF and SOGVF.
trifugal, just like those on the image with a white ring on a
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black background. Therefore, knowledge about the image
structure should be known before using a suitable gradient
field.

Based on the preceding analysis, we developed a novel
active contour model incorporating multigradient vector
field �multi-GVF� algorithm. This model, which we called
the multigradient field active contour model, can complete
multilayer boundary detection. Figure 5 shows how to de-
tect the inner boundary and outer boundary of a ring. Here,
we adopt the image with black ring on white background as
an example. The detailed procedure of an algorithm imple-
mentation is described as follows:

1. Compute the FOGVF and SOGVF of the original im-
age, and the FOGVF of the inverse image.

2. Set up the initial active contour �a circle� in the cen-
tral region of the ring. The initial contour should be
fully encircled by the ring.

3. Deform the active contour under the constraint of the
internal forces, image forces and expanding forces.
The corresponding numerical functions are

xt = �C + lI�−1	�lxt−1 − wimage�Eimage�xt−1,yt−1��/�xt−1

+ wadptfadpt�x�xt−1,yt−1�� , �5a�

yt = �C + lI�−1	�lyt−1 − wimage�Eimage�xt−1,yt−1��/�yt−1

+ wadptfadpt�y�xt−1,yt−1�� . �5b�

Here, the two terms of image force are the second-
order gradient fields: �Eimage�xt−1 ,yt−1� /�xt−1 and
�Eimage�xt−1 ,yt−1� /�yt−1. The adaptive expanding
forces in Eq. �4� are used here. In the homogenous
region, the adaptive expending forces play an impor-
tant role to deform the active contour. In the capture
range of the boundary, the adaptive expanding forces
decrease, and the image forces �SOGVF� act as
strong constraints on the deformation of the contour.
When this active contour reaches the equilibrium of
its energy, the inner boundary of the ring is detected.
Because the image forces are zero, the expanding
forces also reach their minimum.

4. Use the preceding resulting contour as a new initial

Fig. 4 Inverse map of the original image �Fig. 2�a�� and its first-
order gradient field.
one and deform the active contour model again under
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the constraints of the internal forces, image forces,
and expanding forces. The corresponding numerical
equations become

xt = �C + lI�−1�lxt−1 − wimageEimage�x�xt−1,yt−1�

+ wadptfadpt�x�xt−1,yt−1�� , �6a�

yt = �C + lI�−1�lyt−1 − wimageEimage�y�xt−1,yt−1�

+ wadptfadpt�y�xt−1,yt−1�� . �6b�

In the current process, the image forces are the first-
order gradient vectors derived from the inverse map
of the original image. The expanding forces are cho-
sen as a constant rather than as an adaptive one. Be-
cause the image is a black ring on a white back-
ground, the orientation of FOGVF from inverse
image is centrifugal on the inner boundary as what
we wish. This centrifugal image and expanding force
can help active contour escape from the current loca-
tion, as illustrated in Fig. 5�b�. The active contour
passes across the homogeneous area of the ring and

Fig. 5 Inner border and outer border detection by two different
GVFs as the image force.
finally reaches the equilibrium of its energy when it is
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near to the outer boundary of the ring. The current
equilibrium can also be explained as a kind of force
equilibrium between the internal forces, centrifugal
expanding forces and centripetal image forces
�FOGVF on the outer boundary of the ring�. Here,
expanding forces and image forces are two opposing
forces. Because the equilibrium location is not the
minimum of the second-order image force, the cur-
rent location is not really a place of the outer bound-
ary, just near to it, as shown in Fig. 5�c�.

5. This step is a fine-tuning or refinement of the outer
boundary finding. The SOGVF is used again as in
step 3, and the contour model continues to deform
under the second-order gradient vectors, internal
forces, and adaptive expanding forces. Finally, when
energy minimum of the contour is reached, the accu-
rate location of the outer boundary is obtained �Fig.
5�c��.

If there are more concentric layers outside, the algorithm
can repeat steps 3 and 4 and complete the detection of each
layer, but the image force should be treated carefully. For
example, if there is another layer outside, we require a cen-
trifugal image force again as image force. To meet this
requirement, at this time, FOGVF should be calculated
from the original image. Thus, there is a simple regulation
for this kind of concentric layer structure’s detection. If the
detecting procedure is from inner to outer, first we should
judge the FOGVF orientation of the innermost boundary,
then choose the FOGVF for a different boundary alterna-
tively from the original image or the inverse map of the
original image.

3 Experimental Results
In this section, the algorithm was first applied on a syn-
thetic image as well as a simulated ultrasound image for
boundary finding. The implementation of the algorithm on
these images and their corresponding results represents
some general features of the model. Next, the algorithm
was applied for rectal wall boundary detection and anal
wall boundary detection. Some specific settings and ap-
proaches given in the processing procedure on these two
kinds of image showed the flexibility and speciality of the
algorithm for different purpose of boundary detection on
different objects. Finally, we assessed the algorithm on rec-
tal wall ultrasound images and evaluated if it is acceptable
by clinical experts.

3.1 Applying the Algorithm on Synthetic and
Simulated Ultrasound Images

Figure 6 shows the results of applying multigradient field
active contour model for boundary finding on a noisy syn-
thetic image. The image can be considered as a structure of
multiple ring-shaped objects, which enclose. The average
gray value of all “white” regions is 192, and that of all
“black” regions 128. The standard deviation of the noise is
68. It is very clear that the low-level threshold method is
not suitable for boundary detection because the standard
deviation of the noise is greater than the difference of gray
values between two regions.

The original image is first blurred by a Gaussian filter.

Then, its boundaries are detected using a multigradient
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field-active contour. The initial contour model is placed in
the central area of the image. The procedure of boundary
detection is implemented from inner to outer. It is shown
that active contour has settled itself on the energy minimum
at each detection phase and three boundaries are detected
accurately.

To evaluate a simulated ultrasound image, we adopted
the freeware software Field II �Ref. 37�, as the ultrasound
simulation software, which is developed by Professor
JØrgen Arendt Jensen of Denmark University. Field II is a
set of programs for simulating ultrasound transducer fields
and ultrasound imaging using linear acoustics. The pro-
grams use the Tupholme-Stepanishen method for calculat-
ing pulsed ultrasound fields. Because Field II supplies only
the necessary routines for implementing the simulation of
the various ultrasound transducers, users should set up their
own application software.

Based on the routines supplied by Field II, we developed
our own programs for rectal wall ultrasound imaging simu-
lation. The whole process is first to generate an artificial
phantom by drawing a bitmap image with scattering
strength of the region of interest. Then the programming
work is needed, involving scatterers image generation sub-
routine, transducer simulation subroutine, field simulation
and data creation subroutine, and the final image creation
subroutine. The final step is to run the programs and obtain
the simulated ultrasound image. Due to the complexity of
the algorithm and the large amount of data that must be
processed, the time to create an ultrasound image is near to
5 to 7 days on a Pentium II 300 MHz computer.

Figures7�a� and 7�b� illustrate two-boundary detection
results on two simulated ultrasound images, the former has
clearer boundaries than the latter. The white curves repre-
sent the boundaries detected by the algorithm according to
the same approach that detects the boundaries from inner to
outer layer by layer. From the result, it is found the bound-
aries were detected successfully.

3.2 Multilayer Boundary Detection of the Rectal
Wall and Anal Wall

The pictures given in Fig. 8 illustrate the deformation pro-
cess of the multigradient field active contour and the corre-
sponding detection results of the rectal muscular layer

Fig. 6 Test o
boundaries by using multigradient field active contour al-
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gorithm. According to the algorithm, three different gradi-
ent vector fields and their corresponding gradient maps are
created and used as image forces at different detection
phases. These include

1. FOGVF and first-order gradient map of the original
image

2. SOGVF and second-order gradient map of the origi-
nal image

3. FOGVF and first-order gradient map of the inverse
image

Figure 8�a� shows the process of the innermost boundary
detection on a rectal wall image. The initial active contour
is set as a circle and placed in the balloon area. Because of
the features of the active contour model, ultrasound probe
�indicated by white arrow� should be at the interior of the
contour. A series of expanding contours shown on the im-
age represent the boundary searching in progress. Figure
8�b� gives obtained inner boundary of the first muscular
layer �lamina propria layer�. From it, we can find that a
good result of the innermost boundary is obtained because
of the relatively good edge features of the boundary. The
adaptive forces derived from wadpEadpt actually supply a
more flexible and stable control for the expanding process
of the active contour.

Figures 8�c�–8�e� show two phases using active contour
to find the outer boundary of the first muscular layer. Two
different gradient fields—the FOGVF and the SOGVF—

hetic image.

Fig. 7 Boundary detection on two simulated phantoms �white lines

represent the detected boundaries�.
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are used as image forces to control the deformation of the
contour at two different phases. At the first phase, the
FOGVF from original image, which can help active con-
tour escape from the capture range of the inner boundary,
controls the deformation of the active contour �Fig. 8�c��.
Internal force helps constrain the shape of contour, and ex-
panding force helps contour pass across the homogeneous
region. An intermediate result is obtained at the first phase.
This temporary contour locates in the middle between the
inner boundary and the outer boundary of the first layer but
more close to the outer boundary. At the second phase,
active contour deforms under SOGVF and goes on the pro-
cess of finding outer boundary �Fig. 8�d��. Figure 8�e�
shows the obtained outer boundary of the first muscular

Fig. 8 Detecting the three
layer.
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The current obtained boundary can also be considered as
the inner boundary of the second layer. As such, we can use
this boundary as an initial active contour and start the next
searching process. Note, however, that the image forces
that drive the contour’s expansion are from the FOGVF of
the inverse image rather that from that of the original im-
age. This is because we must keep the image forces as
centrifugal forces that have the ability to drive the contour
outward and escape from the current position. If we use the
FOGVF from original image, the image forces will be cen-
tripetal ones, which will drive the contour inward to the
area of the first layer �the gradient field in Fig. 3�a� illus-
trates this principle�. The following steps are the same as
the two phases already mentioned. Figures 8�f� and 8�g�

boundary of the rectum.
show two phases of the outer boundary finding of the sec-
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ond muscular layer. Figure 8�h� shows the obtained bound-
ary. Through the similar process, the outer boundary of the
third layer can be found �Fig. 8�i��.

The features existing in the preceding results can be con-
cluded about as follows. Although the second layer is very
thin, it is found that the new algorithm can distinguish and
extract its boundary. Benefiting from its closed contour fea-
ture, active contour can keep the pseudocontours on the
broken regions of the muscular layers like in tumor region
A �white arrows� and artifact region B �white arrow�.

In the following case, the multigradient field active con-
tour algorithm is used for boundary finding �block arrow
indicating the detected boundary� on a cross-sectional ul-
trasound image of anal canal �Fig. 9�. It is shown the pro-
posed multigradient field algorithm has the ability to cope
with the multiboundary detection issue of other targets such
as the anal canal, which have a concentric muscular layer
structure similar to rectal wall. Figure 9�a� illustrates the
cross-sectional structure of the anal canal on an ultrasound
image. There are two bright interfaces from the probe cone
�white arrows�. Region A is a muscular layer from the mod-
erately reflective subepithelial tissue. Region B represents
the poorly reflective internal anal sphincter. Region C indi-
cates the longitudinal internal muscle. External anal sphinc-
ter out of layer C is not shown in the image. An initial

Fig. 9 Boundary detection o
active contour is placed at the central black area. The
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method of boundary detection of the cone shown in Figs.
9�a�–9�d� is similar to the preceding two examples. The
FOGVF of original image and the FOGVF of inverse im-
age are used alternately to drive active contour escape from
the current constraints and expand outwards. SOGVF is
used to make the contour converge to the energy minimum.
But for boundary finding of the outer boundary �A2� of
layer A and outer boundary �B2� of layer B, there is a tricky
method for using FOGVF, shown in Figs. 9�e� and 9�f�.
When the active contour escapes from the inner boundary
�A1� of layer A for next step searching, FOGVF of inverse
image is used as images forces. As shown in Fig. 9�e�, the
image forces of inverse image point outwards at both A1
and A2, because of the ultrasound features of subepithelial
tissue �layer A� and internal anal sphincter �layer B�. There-
fore, the active contour will not stop when near to A2. It
will expand continuously under FOGVF and stop at the
equilibrium position near to B2. Then, under SOGVF, the
contour can find the outer boundary of layer B. For finding
A2, the contour of B2 is used as the initial one. Adaptive
expanding forces should be converted to shrinking forces
by simply changing their signs in the numerical equation.
At this time, the contour deforms under the shrinking force
and FOGVF of inverse image. It will shrink and stop at the
equilibrium location near to A2. Then under SOGVF, the

nal wall ultrasound image.
contour can converge to the outer boundary of layer A.
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From this example, we can conclude that for different or-
gans with different layer structures, we should have the
a priori knowledge about the feature of the structure. Then
this knowledge can be integrated into the algorithm and
help to determine how to apply different FOGVFs at dif-
ferent detecting phases.

3.3 Assessment of the Algorithm
Figure 10 illustrates the results of automatic detection and
one of manual delineations on the image shown in Fig. 8
�image 1 in Table 1�. For the reason of convenient obser-
vation, we do not draw them on source image but draw
them separately. It is found that the detecting result of the
innermost boundary is very good. The detecting result for
the third layer’s outer boundary is also good.

Figure 11 shows another result from image 3. It also has
a good result. The difference between automatic result and
manual result is mainly on the tumor region. In this part,
the contour obtained by automatic algorithm has a little bit
of shrinkage because of the effect of the internal force. It is
also found that some boundaries at the top of the rectal wall
are cohesive together or one layer’s boundary jumps to an-
other layer. Carefully viewing the result and analyzing the
gradient in these parts, we found it is a reasonable result
because on these parts the gradient fields are weak or none
�two layers merge into one� and even surgeons cannot con-
firm the real position of the boundary from an ultrasound
image. Therefore, it is hard to distinguish the boundaries by
the current algorithm. A suggestion is that more prior
knowledge about the rectal structure and interaction from

Fig. 10 Comparison of automatic results with manual results.
Journal of Electronic Imaging 033010-1
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Table 1 Computer expert difference versus interexpert difference.

Image
No. Expert

IED
�pixel unit� CED

MACED
−MAIED

1 E1 �E1–E2� 0.95 0.65 −0.05

E2 �E2–E3� 0.89 0.90

E3 �E3–E1� 0.74 0.75

2 E1 �E1–E2� 0.91 0.71 −0.08

E2 �E2–E3� 0.98 0.91

E3 �E3–E1� 0.68 0.76

3 E1 �E1–E2� 1.11 0.95 −0.16

E2 �E2–E3� 0.71 0.65

E3 �E3–E1� 0.98 0.88

4 E1 �E1–E2� 1.46 1.30 −0.16

E2 �E2–E3� 0.78 1.01

E3 �E3–E1� 1.35 0.66

5 E1 �E1–E2� 0.91 0.79 −0.12

E2 �E2–E3� 0.64 0.58

E3 �E3–E1� 0.68 0.63

6 E1 �E1–E2� 0.73 0.91 0.05

E2 �E2–E3� 0.61 0.64

E3 �E3–E1� 0.86 0.88

7 E1 �E1–E2� 1.38 1.21 −0.17

E2 �E2–E3� 0.86 0.82

E3 �E3–E1� 1.31 1.11

8 E1 �E1–E2� 1.11 0.82 −0.01

E2 �E2–E3� 1.01 0.85

E3 �E3–E1� 1.21 1.20

9 E1 �E1–E2� 1.44 1.38 −0.06

E2 �E2–E3� 0.88 0.69

E3 �E3–E1� 1.31 0.68

10 E1 �E1–E2� 0.74 1.38 0.40

E2 �E2–E3� 0.88 0.96

E3 �E3–E1� 0.98 0.86

CED, interexpert difference; IED, computer-expert difference;
MACED, maximum computer expert distance; MAIED, maximum in-
terexperts distance.
Jul–Sep 2005/Vol. 14(3)0
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the user should be integrated into the algorithm in the fu-
ture.

Figure 12 shows a result for image 6. Observing the
image, we can find that the image quality on the left-bottom
region below the water balloon is very poor. The muscular
layer features are hard to find in this area. Thus, our model
just can find a subjective boundary of one layer. Therefore,
the main difference between automatically detected contour
and manually delineated boundary is large in this area, as
shown in Fig. 12�b�.

To evaluate the algorithm on clinical images, three ex-
perts were invited to outline the boundary of desired layer.
The experts’ outlined results are compared with the
computer-detected results. The compared results show the
detecting result of the innermost boundary and outer
boundary of the first layer are perfect and fully acceptable
by three experts. For the rest, because of the obvious dif-
ference from the first layer’s boundaries, we choose the
outer boundary of the third muscular layer as evaluated
sample for quantitative analysis. We partially adopt the
evaluating equations defined in Ref. 38 to evaluate the per-
formance of the algorithm. The evaluation method can be
described briefly as follows.

The mean absolute distance �MEAD� between two
curves A= 	a1 ,a2 , . . . ,an� and B= 	b1 ,b2 , . . . ,bn� is defined
as:

e�A,B� =
1

2
1

n


i=1

n

d�ai,B� +
1

n


i=1

n

d�bi,A�� , �7�

where d�ai ,B�=minj�bj −ai�, called closest distance of
point ai to curve B. MEAD is a general definition and will
be replaced in the following by CED �interexpert differ-
ence� and IED �computer to expert difference�, in particu-
lar, representing the mean absolute distance between ex-
perts and that between computer and expert, respectively.

The curves outlined by three experts on an image are
denoted by E1, E2, and E3. Computer-detected one is de-
noted by C. Several parameters, used for the validation, is

Fig. 11 One image
defined as following:
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1. Maximum computer-expert distance �MACED�
=max	CED�=max	e�C ,E1� ,e�C ,E2� ,e�C ,E3��.

2. Maximum interexperts distance �MAIED�
=max	IED�=max	e�E1 ,E2� ,e�E1 ,E3� ,e�E2 ,E3��.

This method, in fact, calculates the difference of expert-
delineated results and the difference between computer-
detected results and experts’ results. Therefore, the method
can show the interexpert variability and computer to expert
difference at the same time. The synthetic indicator
“MACED minus MAIED” represent the acceptable level of
computer-detected results by experts.

Table 1 shows the interexpert difference and computer to
expert difference for desired boundary detection on 10 rec-
tal wall images. Pixel distance is used as the unit. From the
table, it is shown the IED and CED are all not large, show-
ing a good delineated and detecting results. Small IED val-
ues represent that the experts agreed with each other on the
majority of outlined results. The large IED values represent
that there are disagreements between three experts on rec-
ognizing the boundaries of some muscle layers.

The last two columns in Table 1 list the computer to
expert distance and the difference between maximum com-
puter to expert distance and maximum interexpert distance.
We choose difference of MACED and MAIED as our
evaluating parameter. If this value is less than zero, it rep-
resents the computer-detected result is located in the scope
of experts’ agreement and more acceptable.

From Table 1, 8 of 10 automatic tracking results are less
than zero, thereby being consistent with the experts’ results.
There are two values greater than zero, representing they
are out of the scope formed by three experts. One of these
two values are very small, 0.05, representing the tracking
results are very near to the experts’ outlined results. The
last one is larger, therefore representing the result is out of
the scope that experts can accept.

4 Conclusions and Discussion
The investigation of rectal wall multilayer delineation on

ts detection result.
and i
ultrasound images was motivated by the need from clinics
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for a 3-D structure of rectum detection from ultrasound
images that is helpful for clinical diagnosis. Current ultra-
sound imaging systems provide only some basic display
functions for 2-D image and 3-D volume views as well as
some corresponding basic measure functions for distance
and circumference measure, etc. However, a 3-D surface
rendering constructed by detected boundaries of rectal
muscle layers and a suspicious tumor from the ultrasound
images would be a more intuitive visualization in front of a
surgeon. For example, the 3-D visualization of rectum can
directly present how many layers are penetrated by a sus-
picious tumor. This is important for rectal tumor staging.
Further, some basic functions, such as calculating suspi-
cious tumor volume or measuring the length of a broken
layer, can be easily implemented based on the coordinate
information of the detected boundaries. More quantitative
rather qualitative parameters can be given by the system.
All these are a grand goal. Therefore, the boundary detec-
tion of rectal wall layers35 and suspicious tumor39 is the
crucial step of the goal. This paper presents only the first-
stage work involving rectal wall boundary detection.

Boundary detection of the rectal muscular layers is dif-
ficult because of the low spatial resolution of ultrasound
images, the thinness of the rectal layer, and the absence of
the layer segment penetrated by the tumor. Therefore, con-
ventional approaches, such as low-level edge detection and
the edge-linking method, did not meet the study’s require-
ment. Some other high-level methods also have their limi-
tations for the requirement of multilayer detection of the
rectal structure.

The active contour model, snakes, has been used by
many researchers for boundary detection in image process-
ing. With the snakes method, anatomical knowledge of the
rectum can be integrated into layer-detecting procedures.
One of the limitations of the snakes method is its require-
ment that the initial contour to be placed near the desired
edge of the object and its ability to perform only single
object recognition. Therefore, for this study, the tradition
snakes method was not capable of implementing multilayer

Fig. 12 One image with partially po
boundary detection of the rectal wall.
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The multigradient field active contour model proposed
in this paper solved this limitation when applied for rectal
muscular layer’s boundary detection. In the paper, the
FOGVFs and SOGVFs were illustrated. Based on them, a
novel multigradient vector field algorithm was proposed
and introduced into the active contour model. This algo-
rithm makes the active contour able to escape the trammel
from the present layer and go on the next layer searching
and finally realize the multilayer detection successfully.
Adaptive force, which can produce compensation between
internal force and image force, especially in homogeneous
regions in an image, also plays an important role in the
practical application. Some general features such as conver-
gence and the stability of the model are not discussed here,
because these features are not different between the multi-
gradient field model and the traditional model.

Several problems should be considered in future. For a
normal rectal wall without disease, the real boundary for
each layer can be delineated correctly. But for cases in
which some muscular layers are penetrated by tumor, this
algorithm just gives a closed contour for each boundary
because of the features of active contour model �Fig. 8�f��.
Thus, a further work on how to distinguish the real bound-
ary from the virtual boundary that is the tumor part should
be done. Another problem is that during the process of
deformation, the active contour sometimes is easily at-
tracted by some “isolated islands” and forms an irregular
border. The reason is due to the irregularity of the boundary
and some small broken segments on the layer.

Preprocessing the image may be able to solve these de-
fects inherent in ultrasound images. In this paper, we em-
phasize the general features of the algorithm, so no a priori
knowledge about rectal anatomical structure was incorpo-
rated into the algorithm. To set up a more accurate model
for rectal wall layer detection, more prior knowledge and
constraints should be incorporated into the basic model.

The current algorithm was programmed based on the
MATLAB language and evaluated on several cases for re-
search purpose. To reach clinical applicability, a good in-

lity and its boundary-finding results.
terface and interactive system based in the C�� language
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should be developed. Based on this system, then, a large-
scale clinical test should be performed in future work for
different cases.
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