9 research outputs found

    Variability of Eddy Heat Fluxes Over the Northwestern Gulf of Mexico.

    Get PDF
    Eddy heat flux variability over the Louisiana-Texas shelf was investigated using satellite-derived surface velocity and temperature data between October 1993 and October 1994. Assuming the product of sea water density and specific heat is relatively constant, velocity-temperature covariance reflects eddy heat flux (the fluctuating part of the 1 x 1 degree, 90 day mean heat flux). Available velocity and temperature fields, however, are not synchronous. Temperature observations at velocity positions were optimally estimated using the Gauss Markoff Theorem. The error-estimate is comparable to the error resulting from the application of the widely accepted SST correction algorithm. The trend that instantaneous temperature flux principal axes become more isotropic offshore is significant at α\alpha = 0.10 in all seasons but October-December. Across the shelf, eddy heat flux is directed upcoast. In winter, the innershelf upcoast eddy heat flux is induced by cool down-coast transport associated with cold air outbreaks; while near the shelf break, it is induced by warm upcoast transport probably associated with an anticyclonic ring shed from the Loop Current. In the summer, the innershelf up-coast eddy heat flux is induced by warm upcoast transport. Eddy heat transport may be an important term in the winter heat budget. Heat is lost downcoast primarily because of the longshore mean-velocity gradient

    An oceanographic characterizations of the Olympic Coast National Marine Sanctuary and Pacific Northwest: interpretive summary of ocean climate and regional processes through satellite remote sensing

    Get PDF
    This report presents the results of a two-year investigation and summary of oceanographic satellite data obtained from multiple operational data providers and sources, spanning years of operational data collection. Long-term summaries of Sea Surface Temperature (SST) and SST fronts, Sea Surface Height Anomalies (SSHA), surface currents, ocean color chlorophyll and turbidity, and winds are provided. Merged satellite oceanographic data revealed information on: (1) seasonal cycles and timing of transition periods; (2) linkages between seasonal effects (warming and cooling), upwelling processes and transport; and (3) nutrient/sediment sources, sinks, and physical limiting factors controlling surface response for Olympic Coast marine environments. These data and information can be used for building relevant hind cast models, ecological forecasts, and regional environmental indices (e.g. upwelling, climate, “hot spot”) on biological distribution and/or response in the PNW

    Water clarity patterns in South Florida coastal waters and their linkages to synoptic-scale wind forcing

    Get PDF
    Temporal variability in water clarity for South Florida’s marine ecosystems was examined through satellite-derived light attenuation (Kd) coefficients, in the context of wind- and weather patterns. Reduced water clarity along Florida’s coasts is often the result of abrupt wind-resuspension events and other exogenous factors linked to frontal passage, storms, and precipitation. Kd data between 1998 and 2013 were synthesized to form a normalized Kd index (KDI) and subsequently compared with Self Organizing Map (SOM)-based wind field categorizations to reveal spatiotemporal patterns and their inter-relationships. Kd climatological maximums occur from October through December along southern sections of the West Florida Shelf (WFS) and from January through March along the Florida Straits. Spatial clusters of elevated Kd occur along 3 spatial domains: central WFS, southern WFS, and Florida Straits near the Florida Reef Tract, where intra-seasonal variability is the highest, and clarity patterns are associated with transitional wind patterns sequenced with cyclonic circulation. Temporal wind transitions from southerly to northerly, typically accompanying frontal passages, most often result in elevated Kd response. Results demonstrate the potential of using synoptic climatological analysis and satellite indices for tracking variability in water clarity and other indicators related to biological health

    Assessment of natural resource conditions in and adjacent to Dry Tortugas National Park

    Get PDF
    This project characterized and assessed the condition of coastal water resources in the Dry Tortugas National Park (DRTO) located in the Florida Keys. The goal of the assessment was to: (1) identify the state of knowledge of natural resources that exist within the DRTO, (2) summarize the state of knowledge about natural and anthropogenic stressors and threats that affected these resources, and (3) describe strategies being implemented by DRTO managers to meet their resource management goals. The park, located in the Straits of Florida 113 km (70 miles) west of Key West, is relatively small (269 square kilometers) with seven small islands and extensive shallow water coral reefs. Significant natural resources within DRTO include coastal and oceanic waters, coral reefs, reef fisheries, seagrass beds, and sea turtle and bird nesting habitats. This report focuses on marine natural resources identified by DRTO resource managers and researchers as being vitally important to the Tortugas region and the wider South Florida ecosystem. Selected marine resources included physical resources (geology, oceanography, and water quality) and biological resources (coral reef and hardbottom benthic assemblages, seagrass and algal communities, reef fishes and macro invertebrates, and wildlife [sea turtles and sea-birds]). In the past few decades, some of these resources have deteriorated because of natural and anthropogenic factors that are local and global in scale. To meet mandated goals (Chapter 1), resource managers need information on: (1) the types and condition of natural and cultural resources that occur within the park and (2) the stressors and threats that can affect those resources. This report synthesizes and summarizes information on: (1) the status of marine natural resources occurring at DRTO; and (2) types of stressors and threats currently affecting those resources at the DRTO. Based on published information, the assessment suggests that marine resources at DRTO and its surrounding region are affected by several stressors, many of which act synergistically. Of the nine resource components assessed, one resource category – water quality – received an ecological condition ranking of "Good"; two components – the nonliving portion of coral reef and hardbottom and reef fishes – received a rating of "Caution"; and two components – the biotic components of coral reef and hardbottom substrates and sea turtles – received a rating of "Significant concern" (Table E-1). Seagrass and algal communities and seabirds were unrated for ecological condition because the available information was inadequate. The stressor category of tropical storms was the dominant and most prevalent stressor in the Tortugas region; it affected all of the resource components assessed in this report. Commercial and recreational fishing were also dominant stressors and affected 78% of the resource components assessed. The most stressed resource was the biotic component of coral reef and hardbottom resources, which was affected by 76% of the stressors. Water quality was the least affected; it was negatively affected by 12% of stressors. The systematic assessment of marine natural resources and stressors in the Tortugas region pointed to several gaps in the information. For example, of the nine marine resource components reviewed in this report, the living component of coral reefs and hardbottom resources had the best rated information with 25% of stressor categories rated "Good" for information richness. In contrast, the there was a paucity of information for seagrass and algal communities and sea birds resource components

    Algorithms for Processing and Analysis of Ocean Color Satellite Data for Coastal Case 2 Waters

    No full text
    SeaWiFS has the ability to enhance our understanding of many oceanographic processes. However, its utility in the coastal zone has been limited by valid bio-optical algorithms and by the determination of accurate water reflectances, particularly in the blue bands (412-490 nm), which have a significant impact on the effectiveness of all bio-optical algorithms. We have made advances in three areas: algorithm development (Table 16.1), field data collection, and data applications

    The Development of a Non-linear Autoregressive Model with Exogenous Input (NARX) to Model Climate-water Clarity Relationships: Reconstructing a Historical Water Clarity Index for the Coastal Waters of the Southeastern USA

    No full text
    The coastal waters of the southeastern USA contain important protected habitats and natural resources that are vulnerable to climate variability and singular weather events. Water clarity, strongly affected by atmospheric events, is linked to substantial environmental impacts throughout the region. To assess this relationship over the long-term, this study uses an artificial neural network-based time series modeling technique known as non-linear autoregressive models with exogenous input (NARX models) to explore the relationship between climate and a water clarity index (KDI) in this area and to reconstruct this index over a 66-year period. Results show that synoptic-scale circulation patterns, weather types, and precipitation all play roles in impacting water clarity to varying degrees in each region of the larger domain. In particular, turbid water is associated with transitional weather and cyclonic circulation in much of the study region. Overall, NARX model performance also varies—regionally, seasonally and interannually—with wintertime estimates of KDI along the West Florida Shelf correlating to the actual KDI at r \u3e 0.70. Periods of extreme (high) KDI in this area coincide with notable El Niño events. An upward trend in extreme KDI events from 1948 to 2013 is also present across much of the Florida Gulf coast
    corecore