6,006 research outputs found

    The geometry of the hot corona in MCG-05-23-16 constrained by X-ray polarimetry

    Get PDF
    We report on the second observation of the radio-quiet active galactic nucleus MCG-05-23-16 performed with the Imaging X-ray Polarimetry Explorer (IXPE). The observation started on 2022 November 6 for a net observing time of 640 ks, and was partly simultaneous with NuSTAR (86 ks). After combining these data with those obtained in the first IXPE pointing on 2022 May (simultaneous with XMM-Newton and NuSTAR) we find a 2-8 keV polarization degree Π = 1.6 ± 0.7 (at 68 per cent confidence level), which corresponds to an upper limit Π = 3.2 per cent (at 99 per cent confidence level). We then compare the polarization results with Monte Carlo simulations obtained with the monk code, with which different coronal geometries have been explored (spherical lamppost, conical, slab, and wedge). Furthermore, the allowed range of inclination angles is found for each geometry. If the best-fitting inclination value from a spectroscopic analysis is considered, a cone-shaped corona along the disc axis is disfavoured.</p

    Stokes tomography of radio pulsar magnetospheres. I. Linear polarization

    Full text link
    Polarimetric studies of pulsar radio emission traditionally concentrate on how the Stokes vector (I, Q, U, V) varies with pulse longitude, with special emphasis on the position angle (PA) swing of the linearly polarized component. The interpretation of the PA swing in terms of the rotating vector model is limited by the assumption of an axisymmetric magnetic field and the degeneracy of the output with respect to the orientation and magnetic geometry of the pulsar; different combinations of the latter two properties can produce similar PA swings. This paper introduces Stokes phase portraits as a supplementary diagnostic tool with which the orientation and magnetic geometry can be inferred more accurately. The Stokes phase portraits feature unique patterns in the I-Q, I-U, and Q-U planes, whose shapes depend sensitively on the magnetic geometry, inclination angle, beam and polarization patterns, and emission altitude. We construct look-up tables of Stokes phase portraits and PA swings for pure and current-modified dipole fields, filled core and hollow cone beams, and two empirical linear polarization models, L/I = \cos \theta_0 and L/I = \sin \theta_0, where \theta_0 is the colatitude of the emission point. We compare our look-up tables to the measured phase portraits of 24 pulsars in the European Pulsar Network online database. We find evidence in 60% of the objects that the radio emission region may depart significantly from low altitudes, even when the PA swing is S-shaped and/or the pulse-width-period relation is well satisfied. On the other hand, the data are explained adequately if the emission altitude exceeds ~10% of the light cylinder radius. We conclude that Stokes phase portraits should be analysed concurrently with the PA swing and pulse profiles in future when interpreting radio pulsar polarization data.Comment: 60 pages, 58 figures, submitted to MNRAS, accepted 13 Oct 201

    Application of bifurcation methods for the prediction of low-speed aircraft ground performance

    Get PDF
    The design of aircraft for ground maneuvers is an essential part in satisfying the demanding requirements of the aircraft operators. Extensive analysis is done to ensure that a new civil aircraft type will adhere to these requirements, for which the nonlinear nature of the problem generally adds to the complexity of such calculations. Small perturbations in velocity, steering angle, or brake application may lead to significant differences in the final turn widths that can be achieved. Here, the U-turn maneuver is analyzed in detail, with a comparison between the two ways in which this maneuver is conducted. A comparison is also made between existing turn-width prediction methods that consist mainly of geometric methods and simulations and a proposed new method that uses dynamical systems theory. Some assumptions are made with regard to the transient behavior, for which it is shown that these assumptions are conservative when an upper bound is chosen for the transient distance. Furthermore, we demonstrate that the results from the dynamical systems analysis are sufficiently close to the results from simulations to be used as a valuable design tool. Overall, dynamical systems methods provide an order-of-magnitude increase in analysis speed and capability for the prediction of turn widths on the ground when compared with simulations. Nomenclature co = oleo damping coefficient, N s2 =m2 cz = tire vertical damping coefficient Fco = damping force in oleo due to the orifice,

    On the aberration-retardation effects in pulsars

    Full text link
    The magnetospheric locations of pulsar radio emission region are not well known. The actual form of the so--called radius--to--frequency mapping should be reflected in the aberration--retardation (A/R) effects that shift and/or delay the photons depending on the emission height in the magnetosphere. Recent studies suggest that in a handful of pulsars the A/R effect can be discerned w.r.t the peak of the central core emission region. To verify these effects in an ensemble of pulsars we launched a project analysing multi--frequency total intensity pulsar profiles obtained from the new observations from the Giant Meterwave Radio Telescope (GMRT), Arecibo Observatory (AO) and archival European Pulsar Network (EPN) data. For all these profiles we measure the shift of the outer cone components with respect to the core component which is necessary for establishing the A/R effect. Within our sample of 23 pulsars 7 show the A/R effects, 12 of them (doubtful cases) show a tendency towards this effect, while the remaining 4 are obvious counter examples. The counter--examples and doubtful cases may arise from uncertainties in determination of the location of the meridional plane and/or the core emission component. It hence appears that the A/R effects are likely to operate in most pulsars from our sample. We conclude that in cases where those effects are present the core emission has to originate below the conal emission region.Comment: for appendix postscript file, see http://astro.ia.uz.zgora.pl/~chriss/Krzeszowski_2009_appendix.p

    Nonlinear Differential Equations Satisfied by Certain Classical Modular Forms

    Full text link
    A unified treatment is given of low-weight modular forms on \Gamma_0(N), N=2,3,4, that have Eisenstein series representations. For each N, certain weight-1 forms are shown to satisfy a coupled system of nonlinear differential equations, which yields a single nonlinear third-order equation, called a generalized Chazy equation. As byproducts, a table of divisor function and theta identities is generated by means of q-expansions, and a transformation law under \Gamma_0(4) for the second complete elliptic integral is derived. More generally, it is shown how Picard-Fuchs equations of triangle subgroups of PSL(2,R) which are hypergeometric equations, yield systems of nonlinear equations for weight-1 forms, and generalized Chazy equations. Each triangle group commensurable with \Gamma(1) is treated.Comment: 40 pages, final version, accepted by Manuscripta Mathematic

    PSR 0943+10: a bare strange star?

    Get PDF
    Recent work by Rankin & Deshpande strongly suggests that there exist strong ``micro-storms'' rotating around the magnetic axis of the 1.1s pulsar PSR 0943+10. Such a feature hints that most probably the large-voltage vacuum gap proposed by Ruderman & Sutherland (RS) does exist in the pulsar polar cap. However, there are severe arguments against the formation of the RS-type gap in pulsars, since the binding energies of both the Fe ions and the electrons in a neutron star's surface layer is too small to prevent thermionic ejection of the particles from the surface. Here we propose that PSR 0943+10 (probably also most of the other ``drifting'' pulsars) might be bare strange stars rather than normal neutron stars, in which the ``binding energy'' at the surface is merely infinity either for the case of ``pulsar'' or ``anti-pulsar''. It is further proposed that identifying a drifting pulsar as an anti-pulsar is the key criterion to distinguish strange stars from neutron stars.Comment: 4 pages, no figures, LaTeX, accepted 1999 July 9 by ApJ Letter

    On the ratio of consecutive gaps between primes

    Get PDF
    In the present work we prove a common generalization of Maynard-Tao's recent result about consecutive bounded gaps between primes and on the Erd\H{o}s-Rankin bound about large gaps between consecutive primes. The work answers in a strong form a 60 years old problem of Erd\"os, which asked whether the ratio of two consecutive primegaps can be infinitely often arbitrarily small, and arbitrarily large, respectively

    Trans-cinnamaldehyde nanoemulsion wash inactivates Salmonella Enteritidis on shelled eggs without affecting egg color

    Get PDF
    Salmonella Enteritidis is a major foodborne pathogen that causes enteric illnesses in humans, primarily through the consumption of contaminated poultry meat and eggs. Despite implementation of traditional disinfection approaches to reduce S. Enteritidis contamination, egg-borne outbreaks continue to occur, raising public health concerns and adversely affecting the popularity and profitability for the poultry industry. Generally Recognized as Safe (GRAS) status phytochemicals such as Trans-cinnamaldehyde (TC) have previously shown to exhibit anti-Salmonella efficacy, however, the low solubility of TC is a major hurdle in its adoption as an egg wash treatment. Therefore, the present study investigated the efficacy of Trans-cinnamaldehyde nanoemulsions (TCNE) prepared with emulsifiers Tween 80 (Tw.80) or Gum Arabic and lecithin (GAL) as dip treatments, at 34°C, for reducing S. Enteritidis on shelled eggs in presence or absence of 5% chicken litter. In addition, the efficacy of TCNE dip treatments in reducing trans-shell migration of S. Enteritidis across shell barrier was investigated. The effect of wash treatments on shell color were evaluated on d 0, 1, 7, and 14 of refrigerated storage. TCNE-Tw.80 or GAL treatments (0.06, 0.12, 0.24, 0.48%) were effective in inactivating S. Enteritidis by at least 2 to 2.5 log cfu/egg as early as 1 min of washing time (P \u3c 0.05). In presence of organic matter, nanoemulsions (0.48%) reduced S. Enteritidis counts by ∼ 2 to 2.5 log cfu/egg as early as 1 min, (P \u3c 0.05). Nanoemulsion wash also inhibited trans-shell migration of S. Enteritidis, as compared to control (P \u3c 0.05). The nanoemulsion wash treatments did not affect shell color (P \u3e 0.05). Results suggest that TCNE could potentially be used as an antimicrobial wash to reduce S. Enteritidis on shelled eggs, although further studies investigating the effect of TCNE wash treatments on organoleptic properties of eggs are necessary

    Adjustment of the electric current in pulsar magnetospheres and origin of subpulse modulation

    Full text link
    The subpulse modulation of pulsar radio emission goes to prove that the plasma flow in the open field line tube breaks into isolated narrow streams. I propose a model which attributes formation of streams to the process of the electric current adjustment in the magnetosphere. A mismatch between the magnetospheric current distribution and the current injected by the polar cap accelerator gives rise to reverse plasma flows in the magnetosphere. The reverse flow shields the electric field in the polar gap and thus shuts up the plasma production process. I assume that a circulating system of streams is formed such that the upward streams are produced in narrow gaps separated by downward streams. The electric drift is small in this model because the potential drop in narrow gaps is small. The gaps have to drift because by the time a downward stream reaches the star surface and shields the electric field, the corresponding gap has to shift. The transverse size of the streams is determined by the condition that the potential drop in the gaps is sufficient for the pair production. This yields the radius of the stream roughly 10% of the polar cap radius, which makes it possible to fit in the observed morphological features such as the "carousel" with 10-20 subbeams and the system of the core - two nested cone beams.Comment: 8 pages, 1 figur

    Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2

    Get PDF
    Unidirectional fluid flow plays an essential role in the breaking of left-right (L-R) symmetry in mouse embryos, but it has remained unclear how the flow is sensed by the embryo. We report that the Ca2+ channel Polycystin-2 (Pkd2) is required specifically in the perinodal crown cells for sensing the nodal flow. Examination of mutant forms of Pkd2 shows that the ciliary localization of Pkd2 is essential for correct L-R patterning. Whereas Kif3a mutant embryos, which lack all cilia, failed to respond to an artificial flow, restoration of primary cilia in crown cells rescued the response to the flow. Our results thus suggest that nodal flow is sensed in a manner dependent on Pkd2 by the cilia of crown cells located at the edge of the node.CREST of the Japan Science and Technology Corporation; NIH [P30 DK090744]; Human Frontier Science Program [ST00246/2003C]; Deutsche Forschungsgemeinschaft [PE 853/2]; Japan Society for the Promotion of Science; American Heart Association [R10682]info:eu-repo/semantics/publishedVersio
    corecore