4,292 research outputs found

    Amiodarone and cardiac surgery

    Get PDF

    The emergence of proton nuclear magnetic resonance metabolomics in the cardiovascular arena as viewed from a clinical perspective

    Get PDF
    The ability to phenotype metabolic profiles in serum has increased substantially in recent years with the advent of metabolomics. Metabolomics is the study of the metabolome, defined as those molecules with an atomic mass less than 1.5 kDa. There are two main metabolomics methods: mass spectrometry (MS) and proton nuclear magnetic resonance (1H NMR) spectroscopy, each with its respective benefits and limitations. MS has greater sensitivity and so can detect many more metabolites. However, its cost (especially when heavy labelled internal standards are required for absolute quantitation) and quality control is sub-optimal for large cohorts. 1H NMR is less sensitive but sample preparation is generally faster and analysis times shorter, resulting in markedly lower analysis costs. 1H NMR is robust, reproducible and can provide absolute quantitation of many metabolites. Of particular relevance to cardio-metabolic disease is the ability of 1H NMR to provide detailed quantitative data on amino acids, fatty acids and other metabolites as well as lipoprotein subparticle concentrations and size. Early epidemiological studies suggest promise, however, this is an emerging field and more data is required before we can determine the clinical utility of these measures to improve disease prediction and treatment. This review describes the theoretical basis of 1H NMR; compares MS and 1H NMR and provides a tabular overview of recent 1H NMR-based research findings in the atherosclerosis field, describing the design and scope of studies conducted to date. 1H NMR metabolomics-CVD related research is emerging, however further large, robustly conducted prospective, genetic and intervention studies are needed to advance research on CVD risk prediction and to identify causal pathways amenable to intervention

    Conversion from enzyme-inducing antiepileptic drugs to topiramate: effects on lipids and C-reactive protein.

    Get PDF
    PURPOSE: We previously demonstrated that converting patients from the enzyme-inducers phenytoin or carbamazepine to the non-inducers levetiracetam or lamotrigine reduces serum lipids and C-reactive protein (CRP). We sought to determine if the same changes would occur when patients were switched to topiramate, which has shown some evidence of enzyme induction at high doses. We also examined the effects of drug switch on low-density lipoprotein (LDL) particle concentration. METHODS: We converted 13 patients from phenytoin or carbamazepine monotherapy to topiramate monotherapy (most at doses of 100-150 mg/day). Fasting lipids, including LDL particle concentration, and CRP were obtained before and ≥6 weeks after the switch. A group of normal subjects had the same serial serologic measurements to serve as controls. RESULTS: Conversion from inducers to topiramate resulted in a -35 mg/dL decline in total cholesterol (p=0.033), with significant decreases in all cholesterol fractions, triglycerides, and LDL particle concentration (p≤0.03 for all), as well as a decrease of over 50% in serum CRP (p CONCLUSIONS: Changes seen when inducer-treated patients are converted to TPM closely mimic those seen when inducer-treated patients are converted to lamotrigine or levetiracetam. These findings provide evidence that CYP450 induction elevates CRP and serum lipids, including LDL particles, and that these effects are reversible upon deinduction. Low-dose TPM appears not to induce the enzymes involved in cholesterol synthesis

    Twenty-five-year outcomes after multiple internal thoracic artery bypass

    Get PDF
    ObjectiveCoronary artery bypass grafting with multiple internal thoracic artery grafts is currently controversial. This study assessed single institutional outcomes with multiple internal thoracic artery grafting for guidance with future clinical decisions.MethodsIn 19,482 patients undergoing multivessel coronary artery bypass grafting (1984-2009), baseline characteristics were recorded in a prospective databank, and follow-up was obtained by questionnaires, phone contact, or National Death Index. Outcomes examined were subsequent myocardial infarction, percutaneous coronary intervention, reoperative coronary artery bypass grafting, all-cause death, and a composite of the 4. Three groups were defined: (1) no internal thoracic artery graft (1874/19,482 or 9%); (2) single internal thoracic artery grafts and adjunctive venous conduits (single internal thoracic artery; 16,881/19,482 or 87%); and (3) multiple internal thoracic artery grafts (728/19,482 or 4%). Multivariable Cox modeling adjusted for differences in baseline characteristics, and comparisons were performed using area under the curve analysis.ResultsDifferences in baseline characteristics for the no internal thoracic artery graft, single internal thoracic artery, and multiple internal thoracic artery groups were as follows: median age 66, 64, and 59 years, respectively; congestive heart failure 22%, 18%, and 13%, respectively; ejection fraction 0.50, 0.52, and 0.51, respectively; reoperation 10%, 3%, and 7%, respectively; diabetes 27%, 30%, and 15%, respectively; and female gender 33%, 28%, and 20%, respectively. No differences existed in the median number of diseased vessels (3, 3, and 3, respectively) or number of grafts per patient (3, 3, and 3, respectively). Composite outcome improved with increasing internal thoracic artery grafts, whether assessing unadjusted or risk-adjusted data. Compared with no internal thoracic artery graft, the adjusted hazard ratio was 0.79 (confidence interval, 0.74-0.83) for single internal thoracic artery grafting and 0.70 (confidence interval, 0.62-0.80) for multiple internal thoracic artery grafting (both P < .001), reducing risk by 21% and 30%, respectively.ConclusionsThis study confirms improved patient outcomes with multiple internal thoracic artery grafting, achieving half again as much benefit as single internal thoracic artery grafting alone. The data suggest that increasing application of multiple internal thoracic artery grafting should be encouraged to mitigate the inherent risks and costs of long-term cardiac events

    A Tale of Two Current Sheets

    Full text link
    I outline a new model of particle acceleration in the current sheet separating the closed from the open field lines in the force-free model of pulsar magnetospheres, based on reconnection at the light cylinder and "auroral" acceleration occurring in the return current channel that connects the light cylinder to the neutron star surface. I discuss recent studies of Pulsar Wind Nebulae, which find that pair outflow rates in excess of those predicted by existing theories of pair creation occur, and use those results to point out that dissipation of the magnetic field in a pulsar's wind upstream of the termination shock is restored to life as a viable model for the solution of the "σ\sigma" problem as a consequence of the lower wind 4-velocity implied by the larger mass loading.Comment: 17 pages, 6 figures, Invited Review, Proceedings of the "ICREA Workshop on The High-Energy Emission from Pulsars and their Systems", Sant Cugat, Spain, April 12-16, 201
    corecore