9,456 research outputs found
Neutrinos in IceCube/KM3NeT as probes of Dark Matter Substructures in Galaxy Clusters
Galaxy clusters are one of the most promising candidate sites for dark matter
annihilation. We focus on dark matter with mass in the range 10 GeV - 100 TeV
annihilating to muon pairs, neutrino pairs, top pairs, or two neutrino pairs,
and forecast the expected sensitivity to the annihilation cross section into
these channels by observing galaxy clusters at IceCube/KM3NeT. Optimistically,
the presence of dark matter substructures in galaxy clusters is predicted to
enhance the signal by 2-3 orders of magnitude over the contribution from the
smooth component of the dark matter distribution. Optimizing for the angular
size of the region of interest for galaxy clusters, the sensitivity to the
annihilation cross section of heavy DM with mass in the range 300 GeV - 100 TeV
will be of the order of 10^{-24} cm^3 s^{-1}, for full IceCube/KM3NeT live time
of 10 years, which is about one order of magnitude better than the best limit
that can be obtained by observing the Milky Way halo. We find that neutrinos
from cosmic ray interactions in the galaxy cluster, in addition to the
atmospheric neutrinos, are a source of background. We show that significant
improvement in the experimental sensitivity can be achieved for lower DM masses
in the range 10 GeV - 300 GeV if neutrino-induced cascades can be reconstructed
to approximately 5 degrees accuracy, as may be possible in KM3NeT. We therefore
propose that a low-energy extension "KM3NeT-Core", similar to DeepCore in
IceCube, be considered for an extended reach at low DM masses.Comment: v2: 17 pages, 5 figures. Neutrino spectra corrected, dependence on
dark matter substructure model included, references added. Results unchanged.
Accepted in PR
Galactic Center Radio Constraints on Gamma-Ray Lines from Dark Matter Annihilation
Recent evidence for one or more gamma-ray lines at ~ 130 GeV in the Fermi-LAT
data from the Galactic Center has been interpreted as a hint for dark matter
annihilation to Z{\gamma} or H{\gamma} with an annihilation cross section,
~ 10^{-27} cm^3 s^{-1} . We test this hypothesis by comparing
synchrotron fluxes due to the electrons and positrons from the decay of the Z
or the H boson only in the Galactic Center against radio data from the same
region in the Galactic Center. We find that the radio data from single dish
telescopes marginally constrain this interpretation of the claimed gamma lines
for a contracted NFW profile. Already-operational radio telescopes such as LWA,
VLA-Low and LOFAR, and future radio telescopes like SKA, which are sensitive to
annihilation cross sections as small as 10^{-28} cm^3 s^{-1}, can confirm or
rule out this scenario very soon. We discuss the assumptions on the dark matter
profile, magnetic fields, and background radiation density profiles, and show
that the constraints are relatively robust for any reasonable assumptions.
Independent of the above said recent developments, we emphasize that our radio
constraints apply to all models where dark matter annihilates to Z{\gamma} or
H{\gamma}.Comment: v3: 18 pages, 7 figures. Minor changes. Published in Phys. Rev.
PickCells: A Physically Reconfigurable Cell-composed Touchscreen
Touchscreens are the predominant medium for interactions with digital services; however, their current fixed form factor narrows the scope for rich physical interactions by limiting interaction possibilities to a single, planar surface. In this paper we introduce the concept of PickCells, a fully reconfigurable device concept composed of cells, that breaks the mould of rigid screens and explores a modular system that affords rich sets of tangible interactions and novel acrossdevice relationships. Through a series of co-design activities – involving HCI experts and potential end-users of such systems – we synthesised a design space aimed at inspiring future research, giving researchers and designers a framework in which to explore modular screen interactions. The design space we propose unifies existing works on modular touch surfaces under a general framework and broadens horizons by opening up unexplored spaces providing new interaction possibilities. In this paper, we present the PickCells concept, a design space of modular touch surfaces, and propose a toolkit for quick scenario prototyping
Loss Guided Activation for Action Recognition in Still Images
One significant problem of deep-learning based human action recognition is
that it can be easily misled by the presence of irrelevant objects or
backgrounds. Existing methods commonly address this problem by employing
bounding boxes on the target humans as part of the input, in both training and
testing stages. This requirement of bounding boxes as part of the input is
needed to enable the methods to ignore irrelevant contexts and extract only
human features. However, we consider this solution is inefficient, since the
bounding boxes might not be available. Hence, instead of using a person
bounding box as an input, we introduce a human-mask loss to automatically guide
the activations of the feature maps to the target human who is performing the
action, and hence suppress the activations of misleading contexts. We propose a
multi-task deep learning method that jointly predicts the human action class
and human location heatmap. Extensive experiments demonstrate our approach is
more robust compared to the baseline methods under the presence of irrelevant
misleading contexts. Our method achieves 94.06\% and 40.65\% (in terms of mAP)
on Stanford40 and MPII dataset respectively, which are 3.14\% and 12.6\%
relative improvements over the best results reported in the literature, and
thus set new state-of-the-art results. Additionally, unlike some existing
methods, we eliminate the requirement of using a person bounding box as an
input during testing.Comment: Accepted to appear in ACCV 201
Magnetic Lattice Dynamics of the Oxygen-Free FeAs Pnictides: How Sensitive are Phonons to Magnetic Ordering?
To shed light on the role of magnetism on the superconducting mechanism of
the oxygen-free FeAs pnictides, we investigate the effect of magnetic ordering
on phonon dynamics in the low-temperature orthorhombic parent compounds, which
present a spin-density wave. The study covers both the 122 (AFe2As2; A=Ca, Sr,
Ba) and 1111 (AFeAsF; A=Ca, Sr) phases. We extend our recent work on the Ca
(122 and 1111) and Ba (122) cases by treating computationally and
experimentally the 122 and 1111 Sr compounds. The effect of magnetic ordering
is investigated through detailed non-magnetic and magnetic lattice dynamical
calculations. The comparison of the experimental and calculated phonon spectra
shows that the magnetic interactions/ordering have to be included in order to
reproduce well the measured density of states. This highlights a
spin-correlated phonon behavior which is more pronounced than the apparently
weak electron-phonon coupling estimated in these materials. Furthermore, there
is no noticeable difference between phonon spectra of the 122 Ba and Sr,
whereas there are substantial differences when comparing these to CaFe2As2
originating from different aspects of structure and bonding
Low temperature superlattice in monoclinic PZT
TEM has shown that the strongly piezoelectric material Pb(Zr0.52Ti0.48)O3
separates into two phases at low temperatures. The majority phase is the
monoclinic phase previously found by x-ray diffraction. The minority phase,
with a nanoscale coherence length, is a slightly distorted variant of the first
resulting from the anti-phase rotation of the oxygen octahedra about [111].
This work clears up a recent controversy about the origin of superlattice peaks
in these materials, and supports recent theoretical results predicting the
coexistence of ferroelectric and rotational instabilities.Comment: REVTeX4, 4 eps figures embedded. JPG version of figs. 2&4 is also
include
A Quantitative Genetic Basis for Leaf Morphology in a Set of Precisely Defined Tomato Introgression Lines
Evidence for and phases in the morphotropic phase boundary region of : A Rietveld study
We present here the results of the room temperature dielectric constant
measurements and Rietveld analysis of the powder x-ray diffraction data on
(PMN-PT) in the composition range
to show that the morphotropic phase boundary (MPB)
region contains two monoclinic phases with space groups Cm (or type) and
Pm (or type) stable in the composition ranges and
, respectively. The structure of PMN-PT in the
composition ranges 0.26, and is found to be
rhombohedral (R3m) and tetragonal (P4mm), respectively. These results are
compared with the predictions of Vanderbilt & Cohen's theory.Comment: 20 pages, 11 pdf figure
- …
