28 research outputs found

    A general framework to characterize inhibitors of calmodulin: Use of calmodulin inhibitors to study the interaction between calmodulin and its calmodulin binding domains

    Get PDF
    AbstractThe prominent role of Ca2+ in cell physiology is mediated by a whole set of proteins involved in Ca2+-signal generation, deciphering and arrest. Among these intracellular proteins, calmodulin (CaM) known as a prototypical calcium sensor, serves as a ubiquitous carrier of the intracellular calcium signal in all eukaryotic cell types. CaM is assumed to be involved in many diseases including Parkinson, Alzheimer, and rheumatoid arthritis. Defects in some of many reaction partners of CaM might be responsible for disease symptoms. Several classes of drugs bind to CaM with unwanted side effects rather than specific therapeutic use. Thus, it may be more promising to concentrate at searching for pharmacological interferences with the CaM target proteins, in order to find tools for dissecting and investigating CaM-regulatory and modulatory functions in cells.In the present study, we have established a screening assay based on fluorescence polarization (FP) to identify a diverse set of small molecules that disrupt the regulatory function of CaM. The FP-based CaM assay consists in the competition of two fluorescent probes and a library of chemical compounds for binding to CaM.Screening of about 5300 compounds (Strasbourg Academic Library) by displacement of the probe yielded 39 compounds in a first step, from which 6 were selected. Those 6 compounds were characterized by means of calorimetry studies and by competitive displacement of two fluorescent probes interacting with CaM. Moreover, those small molecules were tested for their capability to displace 8 different CaM binding domains from CaM. Our results show that these CaM/small molecules interactions are not functionally equivalent.The strategy that has been set up for CaM is a general model for the development and validation of other CaM interactors, to decipher their mode of action, or rationally design more specific CaM antagonists. Moreover, this strategy may be used for other protein binding assays intended to screen for molecules with preferred binding activity. This article is part of a Special Issue entitled: 12th European Symposium on Calcium

    Identification of periplakin as a major regulator of lung injury and repair in mice

    No full text
    IF 12.784 (2016)International audiencePeriplakin is a component of the desmosomes that acts as a cytolinker between intermediate filament scaffolding and the desmosomal plaque. Periplakin is strongly expressed by epithelial cells in the lung and is a target antigen for autoimmunity in idiopathic pulmonary fibrosis. The aim of this study was to determine the role of periplakin during lung injury and remodeling in a mouse model of lung fibrosis induced by bleomycin. We found that periplakin expression was downregulated in the whole lung and in alveolar epithelial cells following bleomycin-induced injury. Deletion of the Ppl gene in mice improved survival and reduced lung fibrosis development after bleomycin-induced injury. Notably, Ppl deletion promoted an antiinflammatory alveolar environment linked to profound changes in type 2 alveolar epithelial cells, including overexpression of antiinflammatory cytokines, decreased expression of profibrotic mediators, and altered cell signaling with a reduced response to TGF-β1. These results identify periplakin as a previously unidentified regulator of the response to injury in the lung

    Proteomic profiling of serum identifies a molecular signature that correlates with clinical outcomes in COPD

    No full text
    International audienceObjective Novel biomarkers related to main clinical hallmarks of Chronic obstructive pulmonary disease (COPD), a heterogeneous disorder with pulmonary and extra-pulmonary manifestations, were investigated by profiling the serum levels of 1305 proteins using Slow Off-rate Modified Aptamers (SOMA)scan technology. Methods Serum samples were collected from 241 COPD subjects in the multicenter French Cohort of Bronchial obstruction and Asthma to measure the expression of 1305 proteins using SOMAscan proteomic platform. Clustering of the proteomics was applied to identify disease subtypes and their functional annotation and association with key clinical parameters were examined. Cluster findings were revalidated during a follow-up visit, and compared to those obtained in a group of 47 COPD patients included in the Melbourne Longitudinal COPD Cohort. Results Unsupervised clustering identified two clusters within COPD subjects at inclusion. Cluster 1 showed elevated levels of factors contributing to tissue injury, whereas Cluster 2 had higher expression of proteins associated with enhanced immunity and host defense, cell fate, remodeling and repair and altered metabolism/mitochondrial functions. Patients in Cluster 2 had a lower incidence of exacerbations, unscheduled medical visits and prevalence of emphysema and diabetes. These protein expression patterns were conserved during a follow-up second visit, and substanciated, by a large part, in a limited series of COPD patients. Further analyses identified a signature of 15 proteins that accurately differentiated the two COPD clusters at the 2 visits. Conclusions This study provides insights into COPD heterogeneity and suggests that overexpression of factors involved in lung immunity/host defense, cell fate/repair/ remodelling and mitochondrial/metabolic activities contribute to better clinical outcomes. Hence, high throughput proteomic assay offers a powerful tool for identifying COPD endotypes and facilitating targeted therapies

    Proteomic profiling of serum identifies a molecular signature that correlates with clinical outcomes in COPD

    No full text
    Objective Novel biomarkers related to main clinical hallmarks of Chronic obstructive pulmonary disease (COPD), a heterogeneous disorder with pulmonary and extra-pulmonary manifestations, were investigated by profiling the serum levels of 1305 proteins using Slow Off-rate Modified Aptamers (SOMA)scan technology. Methods Serum samples were collected from 241 COPD subjects in the multicenter French Cohort of Bronchial obstruction and Asthma to measure the expression of 1305 proteins using SOMAscan proteomic platform. Clustering of the proteomics was applied to identify disease subtypes and their functional annotation and association with key clinical parameters were examined. Cluster findings were revalidated during a follow-up visit, and compared to those obtained in a group of 47 COPD patients included in the Melbourne Longitudinal COPD Cohort. Results Unsupervised clustering identified two clusters within COPD subjects at inclusion. Cluster 1 showed elevated levels of factors contributing to tissue injury, whereas Cluster 2 had higher expression of proteins associated with enhanced immunity and host defense, cell fate, remodeling and repair and altered metabolism/mitochondrial functions. Patients in Cluster 2 had a lower incidence of exacerbations, unscheduled medical visits and prevalence of emphysema and diabetes. These protein expression patterns were conserved during a follow-up second visit, and substanciated, by a large part, in a limited series of COPD patients. Further analyses identified a signature of 15 proteins that accurately differentiated the two COPD clusters at the 2 visits. Conclusions This study provides insights into COPD heterogeneity and suggests that overexpression of factors involved in lung immunity/host defense, cell fate/repair/ remodelling and mitochondrial/metabolic activities contribute to better clinical outcomes. Hence, high throughput proteomic assay offers a powerful tool for identifying COPD endotypes and facilitating targeted therapies
    corecore