13 research outputs found

    Ketamine as an adjuvant in sympathetic blocks for management of central sensitization following peripheral nerve injury

    Get PDF
    Proliferation of NMDA receptors and role of glutamate in producing central sensitization and 'wind up' phenomena in CRPS [complex regional pain syndrome] forms a strong basis for the use of Ketamine to block the cellular mechanisms that initiate and maintain these changes. In this case series, we describe 3 patients of CRPS Type II with debilitating central sensitization, heat/mechano allodynia and cognitive symptoms that we termed 'vicarious pain'. Each of these patients had dramatic relief with addition of Ketamine as an adjuvant to the sympathetic blocks after conventional therapy failed

    Report from Working Group 3: Beyond the standard model physics at the HL-LHC and HE-LHC

    Get PDF
    This is the third out of five chapters of the final report [1] of the Workshop on Physics at HL-LHC, and perspectives on HE-LHC [2]. It is devoted to the study of the potential, in the search for Beyond the Standard Model (BSM) physics, of the High Luminosity (HL) phase of the LHC, defined as 33 ab1^{-1} of data taken at a centre-of-mass energy of 14 TeV, and of a possible future upgrade, the High Energy (HE) LHC, defined as 1515 ab1^{-1} of data at a centre-of-mass energy of 27 TeV. We consider a large variety of new physics models, both in a simplified model fashion and in a more model-dependent one. A long list of contributions from the theory and experimental (ATLAS, CMS, LHCb) communities have been collected and merged together to give a complete, wide, and consistent view of future prospects for BSM physics at the considered colliders. On top of the usual standard candles, such as supersymmetric simplified models and resonances, considered for the evaluation of future collider potentials, this report contains results on dark matter and dark sectors, long lived particles, leptoquarks, sterile neutrinos, axion-like particles, heavy scalars, vector-like quarks, and more. Particular attention is placed, especially in the study of the HL-LHC prospects, to the detector upgrades, the assessment of the future systematic uncertainties, and new experimental techniques. The general conclusion is that the HL-LHC, on top of allowing to extend the present LHC mass and coupling reach by 2050%20-50\% on most new physics scenarios, will also be able to constrain, and potentially discover, new physics that is presently unconstrained. Moreover, compared to the HL-LHC, the reach in most observables will, generally more than double at the HE-LHC, which may represent a good candidate future facility for a final test of TeV-scale new physics

    Adjuvants for intravenous regional anaesthesia

    No full text

    Comparison of Cobra perilaryngeal airway (CobraPLA TM ) with flexible laryngeal mask airway in terms of device stability and ventilation characteristics in pediatric ophthalmic surgery

    No full text
    Background: Supraglottic airway devices play an important role in ophthalmic surgery. The flexible laryngeal mask airway (LMA TM ) is generally the preferred airway device. However, there are no studies comparing it with the Cobra perilaryngeal airway (CobraPLA TM ) in pediatric ophthalmic procedures. Aims: To analyze the intraoperative device stability and ability to maintain normocarbia of CobraPLA TM and compare it to that with flexible LMA TM . Materials and Methods: Ninety children of American Society for Anesthesiologists physical status 1 and 2, aged 3-15 years scheduled for elective ophthalmic surgeries were randomly assigned to either the CobraPLA TM or the flexible LMA TM group. After placement of each airway device, oropharyngeal leak pressure (OLP) was noted. Adequate seal of the devices was confirmed at an inspired pressure of 15 cm H 2 O and pressure-controlled ventilation was initiated. Device displacement was diagnosed if there was a change in capnograph waveform, audible or palpable gas leak, change in expired tidal volume to 6 kPa, or need to increase inspired pressure to >18 cm H 2 O to maintain normocarbia. Results: Demographic data, duration, and type of surgery in both the groups were similar. A higher incidence of intraoperative device displacement was noted with the CobraPLA TM in comparison to flexible LMA TM (P < 0.001). Incidence of displacement was higher in strabismus surgery (7/12). Insertion characteristics and ventilation parameters were comparable. The OLP was significantly higher in CobraPLA TM group (28 ± 6.8 cm H 2 O) compared to the flexible LMA TM group (19.9 ± 4.5 cm H 2 O) (P < 0.001). Higher surgeon dissatisfaction (65.9%) was seen in the CobraPLA TM group. Conclusion: The high incidence of device displacement and surgeon dissatisfaction make CobraPLA TM a less favorable option than flexible LMA TM in ophthalmic surgery

    Efficacy of magnesium as an adjuvant to bupivacaine in 3-in-1 nerve block for arthroscopic anterior cruciate ligament repair

    No full text
    Background and Aims: Three-in-one and femoral nerve blocks are proven modalities for postoperative analgesia following anterior cruciate ligament (ACL) reconstruction. The aim of this study was to evaluate the efficacy of magnesium (Mg) as an adjuvant to bupivacaine in 3-in-1 block for ACL reconstruction. Methods: Sixty patients undergoing arthroscopic ACL reconstruction were randomly allocated to Group I (3-in-1 block with 30 ml of 0.25% bupivacaine preceded by 1.5 ml of intravenous [IV] saline), Group II (3-in-1 block with 30 ml of 0.25% bupivacaine preceded by 1.5 ml of solution containing 150 mg Mg IV) or Group III (3-in-1 block with 30 ml containing 0.25% bupivacaine and 150 mg of Mg as adjuvant preceded by 1.5 ml of IV saline). Post-operatively, patients received morphine when visual analogue scale (VAS) score was ≥4. Quantitative parameters were compared using one-way ANOVA and Kruskal–Wallis test and qualitative data were analysed using Chi-square test. Results: Demographics, haemodynamic parameters, intra-operative fentanyl requirement, post-operative VAS scores and total morphine requirement were comparable between groups. Time to first analgesic requirement was significantly prolonged in Group III (789 ± 436) min compared to Group I (466 ± 290 min) and Group II (519 ± 274 min), (P = 0.02 and 0.05). Significantly less number of patients in Group III (1/20) received morphine in the first 6 h post-operatively, compared to Group I (8/20) and Group II (6/20) (P = 0.008 and 0.03). No side effects were observed. Conclusion: Mg as an adjuvant to bupivacaine in 3-in-1 block for ACL reconstruction significantly prolongs the time to first analgesic requirement and reduces the number of patients requiring morphine in the immediate post-operative period

    Report from Working Group 3: Beyond the Standard Model physics at the HL-LHC and HE-LHC

    No full text
    This is the third out of five chapters of the final report [1] of the Workshop on Physics at HL-LHC, and perspectives on HE-LHC [2]. It is devoted to the study of the potential, in the search for Beyond the Standard Model (BSM) physics, of the High Luminosity (HL) phase of the LHC, defined as 33 ab1^{-1} of data taken at a centre-of-mass energy of 14 TeV, and of a possible future upgrade, the High Energy (HE) LHC, defined as 1515 ab1^{-1} of data at a centre-of-mass energy of 27 TeV. We consider a large variety of new physics models, both in a simplified model fashion and in a more model-dependent one. A long list of contributions from the theory and experimental (ATLAS, CMS, LHCb) communities have been collected and merged together to give a complete, wide, and consistent view of future prospects for BSM physics at the considered colliders. On top of the usual standard candles, such as supersymmetric simplified models and resonances, considered for the evaluation of future collider potentials, this report contains results on dark matter and dark sectors, long lived particles, leptoquarks, sterile neutrinos, axion-like particles, heavy scalars, vector-like quarks, and more. Particular attention is placed, especially in the study of the HL-LHC prospects, to the detector upgrades, the assessment of the future systematic uncertainties, and new experimental techniques. The general conclusion is that the HL-LHC, on top of allowing to extend the present LHC mass and coupling reach by 2050%20-50\% on most new physics scenarios, will also be able to constrain, and potentially discover, new physics that is presently unconstrained. Moreover, compared to the HL-LHC, the reach in most observables will, generally more than double at the HE-LHC, which may represent a good candidate future facility for a final test of TeV-scale new physics

    Report from Working Group 3 : Beyond the Standard Model Physics at the HL-LHC and HE-LHC

    No full text
    CERN Yellow Reports: Monographs, vol 7 (2019)Contribution to: HL/HE-LHC WorkshopThis is the third out of five chapters of the final report [1] of the Workshop on Physics at HL-LHC, and perspectives on HE-LHC [2]. It is devoted to the study of the potential, in the search for Beyond the Standard Model (BSM) physics, of the High Luminosity (HL) phase of the LHC, defined as 33 ab1^{-1} of data taken at a centre-of-mass energy of 14 TeV, and of a possible future upgrade, the High Energy (HE) LHC, defined as 1515 ab1^{-1} of data at a centre-of-mass energy of 27 TeV. We consider a large variety of new physics models, both in a simplified model fashion and in a more model-dependent one. A long list of contributions from the theory and experimental (ATLAS, CMS, LHCb) communities have been collected and merged together to give a complete, wide, and consistent view of future prospects for BSM physics at the considered colliders. On top of the usual standard candles, such as supersymmetric simplified models and resonances, considered for the evaluation of future collider potentials, this report contains results on dark matter and dark sectors, long lived particles, leptoquarks, sterile neutrinos, axion-like particles, heavy scalars, vector-like quarks, and more. Particular attention is placed, especially in the study of the HL-LHC prospects, to the detector upgrades, the assessment of the future systematic uncertainties, and new experimental techniques. The general conclusion is that the HL-LHC, on top of allowing to extend the present LHC mass and coupling reach by 2050%20-50\% on most new physics scenarios, will also be able to constrain, and potentially discover, new physics that is presently unconstrained. Moreover, compared to the HL-LHC, the reach in most observables will, generally more than double at the HE-LHC, which may represent a good candidate future facility for a final test of TeV-scale new physics
    corecore