3 research outputs found
Heparin-Derived Theranostic Nanoprobes Overcome the Blood-Brain Barrier and Target Glioma in Murine Model
The poor permeability of theranostic agents across the blood-brain barrier (BBB) significantly hampers the development of new treatment modalities for neurological diseases. A new biomimetic nanocarrier is discovered using heparin (HP) that effectively passes the BBB and targets glioblastoma. Specifically, HP-coated gold nanoparticles (HP-AuNPs) are designed that are labeled with three different imaging modalities namely, fluorescein (FITC-HP-AuNP), radioisotope (68)Gallium (Ga-68-HP-AuNPs), and MRI active gadolinium (Gd-HP-AuNPs). The systemic infusion of FITC-HP-AuNPs in three different mouse strains (C57BL/6JRj, FVB, and NMRI-nude) displays excellent penetration and reveals uniform distribution of fluorescent particles in the brain parenchyma (69-86%) with some accumulation in neurons (8-18%) and microglia (4-10%). Tail-vein administration of radiolabeled Ga-68-HP-AuNPs in healthy rats also show Ga-68-HP-AuNP inside the brain parenchyma and in areas containing cerebrospinal fluid, such as the lateral ventricles, the cerebellum, and brain stem. Finally, tail-vein administration of Gd-HP-AuNPs (that displays approximate to threefold higher relaxivity than that of commercial Gd-DTPA) in an orthotopic glioblastoma (U87MG xenograft) model in nude mice demonstrates enrichment of T1-contrast at the intracranial tumor with a gradual increase in the contrast in the tumor region between 1 and 3 h. It is believed, the finding offers the untapped potential of HP-derived-NPs to deliver cargo molecules for treating neurological disorders.Peer reviewe
Bidirectional cell-matrix interaction dictates neuronal network formation in a brain-mimetic 3D scaffold
Human pluripotent stem cells (hPSC) derived neurons are emerging as a powerful tool for studying neurobiology, disease pathology, and modeling. Due to the lack of platforms available for housing and growing hPSC-derived neurons, a pressing need exists to tailor a brain-mimetic 3D scaffold that recapitulates tissue composition and favourably regulates neuronal network formation. Despite the progress in engineering biomimetic scaffolds, an ideal brain-mimetic scaffold is still elusive. We bioengineered a physiologically relevant 3D scaffold by integrating brain-like extracellular matrix (ECM) components and chemical cues. Culturing hPSCs-neurons in hyaluronic acid (HA) gels and HA-chondroitin sulfate (HA-CS) composite gels showed that the CS component prevails as the predominant factor for the growth of neuronal cells, albeit to modest efficacy. Covalent grafting of dopamine (DA) moieties to the HA-CS gel (HADA-CS) enhanced the scaffold stability and stimulated the gel's remodeling properties by entrapping cell-secreted laminin, and binding brain-derived neurotrophic factor (BDNF). Neurons cultured in the scaffold expressed Col1, Col11, and ITGB4; important for cell adhesion and cell-ECM signaling. Thus, the HA-CS scaffold with integrated chemical cues (DA) supported neuronal growth and network formation. This scaffold offers a valuable tool for tissue engineering and disease modeling and helps in bridging the gap between animal models and human diseases by providing biomimetic neurophysiology.peerReviewe
An unexpected role of hyaluronic acid in trafficking siRNA across the cellular barrier: The first biomimetic, anionic, non-viral transfection method
Circulating nucleic acids, such as short interfering RNA (siRNA), regulate many biological processes; however, the mechanism by which these molecules enter the cell is poorly understood. The role of extracellular-matrix-derived polymers in binding siRNAs and trafficking them across the plasma membrane is reported. Thermal melting, dynamic light scattering, scanning electron microscopy, and computational analysis indicate that hyaluronic acid can stabilize siRNA via hydrogen bonding and Van der Waals interactions. This stabilization facilitated HA size- and concentration-dependent gene silencing in a CD44-positive human osteosarcoma cell line (MG-63) and in human mesenchymal stromal cells (hMSCs). This native HA-based siRNA transfection represents the first report on an anionic, non-viral delivery method that resulted in approximately 60 % gene knockdown in both cell types tested, which correlated with a reduction in translation levels