232 research outputs found

    Preoperative PROMIS Depression Scores Can Predict Failure to Improve After Trapeziectomy and LRTI

    Get PDF
    Introduction Patient-Reported Outcomes Measurement Information System (PROMIS) scores have been utilized in setting realistic post-intervention expectations. Predicting likelihood of improvement based on pre-operative variables may allow for better decision-making and patient counseling. We hypothesized that preoperative PROMIS scores correlate with patients’ subjective level of improvement after trapeziectomy and ligament reconstruction with tendon interposition (LRTI) Methods Retrospective chart review was performed to identify patients who underwent trapeziectomy and LRTI. Preoperative PROMIS Upper Extremity (UE), Pain Interference (PI), Depression (DP), and QuickDASH (QD) scores were collected. At follow-up appointments, patients were asked an anchor question: “Since your treatment, how would you rate your overall function?”. Responses represent a 7-point Likert scale from “Much Worse” to “Much Improved”. Univariable logistic regression modeled significance between preoperative scores and subjective improvement. Correlation between preoperative scores and anchor question responses was calculated using Receiver Operating Characteristic (ROC) Curves and reported as area under the curve (AUC). Results There were 69 patients included in this study. Forty-two patients (61%) reported “somewhat improved” or better and 27 patients (39%) reported “no change” or worse. Univariate logistic regression revealed that PROMIS Depression scores were significantly correlated with subjective improvement. Patients with higher PROMIS Depression scores demonstrated a lower likelihood of reporting improvement. AUC of 0.76 for PROMIS Depression scores indicated a strong predictive ability. Conclusion Patients with higher pre-operative PROMIS Depression scores are significantly less likely to report improvement after trapeziectomy with LRTI. This had a strong predictive ability and may improve future patient selection and pre-operative counseling

    Preoperative PROMIS Depression Scores Can Predict Failure to Improve after Trapeziectomy and LRTI

    Get PDF
    INTRODUCTION: Patient-Reported Outcomes Measurement Information System (PROMIS) scores have been utilized in setting realistic post-intervention expectations. Having a model to stratify likelihood of improvement based on pre-operative variables may allow for better decision making and patient counseling. We hypothesized that preoperative PROMIS scores correlate with patients’ subjective level of improvement after trapeziectomy and ligament reconstruction with tendon interposition (LRTI) METHODS: Retrospective chart review was performed to identify patients who underwent trapeziectomy and LRTI. Demographic data along with preoperative PROMIS Upper Extremity (UE), Pain Interference (PI), Depression (DP), and QuickDASH (QD) scores were collected. At their follow-up appointment, patients were asked a follow-up anchor question: “Since your treatment, how would you rate your overall function?”. Possible responses represent a 7-point Likert scale from “Much Worse” to “Much Improved”. Significance between preoperative scores and subjective improvement were modeled using univariable logistic regression. Correlation between preoperative scores and patient anchor question response was calculated using Receiver Operating Characteristic (ROC) Curves and reported as area under the curve (AUC) (values 0.6 - 0.69; moderate predictive ability, 0.7 - 0.79; strong, and \u3e 0.8; excellent). RESULTS: There were 69 patients included in this study. The mean age was 62 years and 78% of patients were female. The median follow-up time was 40 days (interquartile range 13-86 days). Forty-two patients (61%) reported “somewhat improved” or better and 27 patients (39%) reported “no change” or worse. Univariate logistic regression revealed that preoperative PROMIS Depression scores were significantly correlated with achieving subjective improvement (Table 1), with patients with higher pre-operative depression scores demonstrating a lower likelihood of reporting improvement. ROC curves an AUC of 0.76 for preoperative PROMIS Depression scores indicating a strong predictive ability (Table 2). Preoperative PROMIS UE, PI, and QD scores were not significantly correlated with subjective improvement. DISCUSSION: Patients with higher preoperative PROMIS Depression scores are significantly less likely to report improvement after trapeziectomy with LRTI; this had overall strong predictive ability. Development of a predictive model through utilization of preoperative PROMIS Depression scores will allow for providers to elucidate improved decision making and more realistic patient expectations after intervention which may improve patient satisfaction overall. Lack of significant correlation between PROMIS UE, PI, and QD scores and subjective improvement indicates a limitation of this study in utilizing these scores within the predictive model. SIGNIFICANCE/CLINICAL RELEVANCE: This study is significant because use of preoperative PROMIS Depression scores to predict patients’ likelihood to improve after trapziectomy and LRTI may improve patient selection and pre-operative counseling in the future. FIGURES: Table 1. Univariable Logistic Regression. Odds ratio are reported relative to achieving subjective improvement. Non-Improved [Mean (SD)] Improved [Mean (SD)] Odds Ratio (1-point increase) 95% Confidence Interval P-value Preop UE 31.5 (5.6) 32.1 (5.6) 1.03 0.94-1.12 P = 0.56 Preop PI 63 (7.9) 61.4 (5.1) 0.95 0.87-1.04 P = 0.30 Preop DP 52.6 (4.6) 45.8 (9.7) 0.88 0.77-1.00 P = 0.03 Preop QD 55.1 (18.4) 51.0 (17.0) 0.98 0.96-1.01 P= 0.37 Preop, Preoperative; UE, PROMIS Upper Extremity; PI, PROMIS Pain Interference; DP, PROMIS Depression; QD QuickDASH Table 2. ROC Curve illustrating diagnostic abilities of the preoperative PROMIS and QD scores to predict subjective patient outcome (AUC values of 0.6 to 0.69 - moderate predictive ability, 0.7 to 0.79 - strong, and \u3e 0.8 - excellent). Variable AUC UE 0.55 PI 0.65 DP 0.76 QD 0.60 AUC, Area Under the Curve; UE, Preoperative PROMIS UE Score; PI, Preoperative PROMIS PI Score; DP, Preoperative PROMIS Depression Score; QD, Preoperative QuickDASH Scor

    Tendonitis and Tendon Rupture in Low-Profile Dorsal versus Volar Plating for Distal Radius Fractures: A Systematic Review and Meta-Analysis

    Get PDF
    INTRODUCTION: Dorsal plating of distal radius fractures has been associated with high rates of hardware removal, tendonitis, and tendon rupture. Much of this research was performed using 2.5mm thick distal radius plating, whereas modern dorsal plates are thinner (1.2mm-1.5mm). We examine whether modern plates have higher rates of complications than volar plates. METHODS: We search Ovid MEDLINE, Web of Science, and EMBASE for literature describing tendon complications associated with plating of distal radius fractures. Inclusion criteria included any comparison between volar and dorsal plating and report of tendon complication. Exclusion criteria included: failure to specify low-profile dorsal plates; lack of volar plating comparison arm; no reporting of tendon complications. All studies were assessed for quality using MINOR’s criteria. RESULTS: All 5 included studies were retrospective cohorts, totaling 806 subjects; 584 received volar plates and 222 received dorsal plates. Minimum average follow-up was 5 months. Of the volar plate group, 2% had symptoms consistent with tendonitis, 1% experienced a tendon rupture, and 4% underwent hardware removal. In the dorsal group, 6% had tendonitis, 1% had tendon ruptures, and 11% underwent hardware removal. Meta-analysis showed no significant difference in rates of tendonitis (4 studies, Z=0.79, P=0.43) or tendon rupture (5 studies, Z=0.59, P=0.56). DISCUSSION: To our knowledge, this review provides the largest comparison of modern dorsal and volar distal radius plates to date. Our results do not demonstrate increased risk of tendon complications in patients who underwent dorsal plating. This study sets a precedent for more routine use of dorsal plating

    An evaluation of the TRIPS computer system

    Get PDF
    The TRIPS system employs a new instruction set architecture (ISA) called Explicit Data Graph Execution (EDGE) that renegotiates the boundary between hardware and software to expose and exploit concurrency. EDGE ISAs use a block-atomic execution model in which blocks are composed of dataflow instructions. The goal of the TRIPS design is to mine concurrency for high performance while tolerating emerging technology scaling challenges, such as increasing wire delays and power consumption. This paper evaluates how well TRIPS meets this goal through a detailed ISA and performance analysis. We compare performance, using cycles counts, to commercial processors. On SPEC CPU2000, the Intel Core 2 outperforms compiled TRIPS code in most cases, although TRIPS matches a Pentium 4. On simple benchmarks, compiled TRIPS code outperforms the Core 2 by 10% and hand-optimized TRIPS code outperforms it by factor of 3. Compared to conventional ISAs, the block-atomic model provides a larger instruction window, increases concurrency at a cost of more instructions executed, and replaces register and memory accesses with more efficient direct instruction-to-instruction communication. Our analysis suggests ISA, microarchitecture, and compiler enhancements for addressing weaknesses in TRIPS and indicates that EDGE architectures have the potential to exploit greater concurrency in future technologies

    Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications

    Get PDF
    A systematic study was conducted into the use of metal-assisted chemical etching (MacEtch) to fabricate vertical Si microwire arrays, with several models being studied for the efficient redox reaction of reactants with silicon through a metal catalyst by varying such parameters as the thickness and morphology of the metal film. By optimizing the MacEtch conditions, high-quality vertical Si microwires were successfully fabricated with lengths of up to 23.2 mu m, which, when applied in a solar cell, achieved a conversion efficiency of up to 13.0%. These solar cells also exhibited an open-circuit voltage of 547.7 mV, a short-circuit current density of 33.2 mA/cm(2), and a fill factor of 71.3% by virtue of the enhanced light absorption and effective carrier collection provided by the Si microwires. The use of MacEtch to fabricate high-quality Si microwires therefore presents a unique opportunity to develop cost-effective and highly efficient solar cells.open1

    Responsive Production in Manufacturing: A Modular Architecture

    Full text link
    [EN] This paper proposes an architecture aiming at promoting the convergence of the physical and digital worlds, through CPS and IoT technologies, to accommodate more customized and higher quality products following Industry 4.0 concepts. The architecture combines concepts such as cyber-physical systems, decentralization, modularity and scalability aiming at responsive production. Combining these aspects with virtualization, contextualization, modeling and simulation capabilities it will enable self-adaptation, situational awareness and decentralized decision-making to answer dynamic market demands and support the design and reconfiguration of the manufacturing enterprise.The research leading to these results has received funding from the European Union H2020 project C2 NET (FoF-01-2014) nr 636909.Marques, M.; Agostinho, C.; Zacharewicz, G.; Poler, R.; Jardim-Goncalves, R. (2018). Responsive Production in Manufacturing: A Modular Architecture. Studies in Systems, Decision and Control. 140:231-254. https://doi.org/10.1007/978-3-319-78437-3_10S231254140European Commission: For a European Industrial Renaissance, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions (2014)Hartmann, B., King, W.P., Narayanan, S.: Digital manufacturing: the revolution will be virtualized. McKinsey & Company (2015)European Forum for Manufacture: Driving Innovation and Growth in European Manufacturing (2015)European Factories of the Future Research Association (EFFRA): Factories of the Future: Multi-annual Roadmap for the Contractual PPP under the Horizon 2020 (2013)European Commission: Horizon 2020—Work Programme 2016–2017: 17. Cross-cutting Activities (2016)Schlaepfer, R.C., Koch, M., Merkofer, P.: Industry 4.0 challenges and solutions for the digital transformation and use of exponential technologies. Deloitte AG (2015)7iD: Industry 4.0. https://www.7id.com/technology/industry-4-0/ (2016)European Commission: Horizon 2020—Work Program 2016-2017—Cross-cutting Activities, 25 July 2016EFFRA: Factories of the Future: Multi-annual Roadmap for the Contractual PPP under the Horizon 2020 (2013)FInES Research Roadmap Task Force (2012)Jacinto, J.: Smart manufacturing? Industry 4.0? What’s it all about? Siements Totally Integrated Automation, Automation World & Design World (2014)Monostori, L.: Cyber-physical production systems: roots, expectations and R&D challenges. Procedia CIRP 17, 9–13 (2014)Adolphs, P.: RAMI 4.0—An architectural Model for Industrie 4.0. Platform Industrie 4.0 (2015)Collins, M.: Why America has a shortage of skilled workers. Industry Week (2015)Forbes, J., Naujok, N., Geissbauer, R., Vedso, J., Schrauf, S.: Industry 4.0: building the digital enterprise. PWC (2016)World Economic Forum Industrial Internet Survey (2014)Chen, D., Vernadat, F.B.: Enterprise interoperability: a standardisation view. Enterprise Inter- and Intra-Organizational Integration, Volume 108 of the series IFIP—The International Federation for Information Processing, pp. 273–282 (2003)Yan, L., Li, Z., Yuan, X.: Study on method-of-robust-multidisciplinary-design-collaborative-decision for product design. Inf. Technol. J. 8(4), 441–452 (2009)Ruiz Dominguez, G. A.: Caractérisation de l’activité de conception collaborative à distance: étude des effets de synchronisation cognitive (2005)Jung, J.J.: Reusing ontology mappings for query routing in semantic peer-to-peer environment. Inf. Sci. (2010). https://doi.org/10.1016/j.ins.2010.04.018Ranjan, R., Zhao, L., Wu, X., Liu, A., Quiroz, A., Parashar, M.: Peer-to-Peer Cloud Provisioning: Service Discovery and Load-Balancing. https://doi.org/10.1007/978-1-84996-241-4_12Agostinho, C., Pinto, P., Jardim-goncalves, R.: Dynamic adaptors to support model-driven interoperability and enhance sensing enterprise networks. In: 19th World Congress of the International Federation of Automatic Control (IFAC’14), Cape Town, South Africa (2014)Chen, D., Doumeingts, G., Vernadat, F.: Architectures for enterprise integration and interoperability: past, present and future. Comput. Ind. 59, 647–659 (2008). https://doi.org/10.1016/j.compind.2007.12.016Ducq, Y., Chen, D., Alix, T.: Principles of servitization and definition of an architecture for model driven service system engineering. In: 4th International IFIP Working Conference on Enterprise Interoperability (IWEI 2012), Harbin, China, 2012. https://doi.org/10.1007/978-3-642-33068-17_12Elvesæter, B., Hahn, A., Berre, A., Neple, T.: Towards an interoperability framework for model-driven development of software systems. In: 1st International Conference on Interoperability Enterprise Software and Applications. Springer. http://www.springerlink.com/index/L10NU4306N054T6G.pdf (2005)OMG: MDA Guide Version 1.0.1 (omg/2003-06-01), Object Management Group. http://www.omg.org/cgibin/doc?omg/03-06-01.pdf (2003)Agostinho, C., Ducq, Y., Zacharewicz, G., Sarraipa, J., Lampathaki, F., Poler, R., Jardim-Goncalves, R.: Towards a sustainable interoperability in networked enterprise information systems: trends of knowledge and model-driven technology. Comput. Ind. (2015). https://doi.org/10.1016/j.compind.2015.07.001Santucci, G., Martinez, C., Vlad-câlcic, D.: The sensing enterprise. In: FInES Work. FIA 2012, Aalborg, Denmark. http://www.theinternetofthings.eu/sites/default/files/%5Buser-name%5D/Sensing-enterprise.pdf (2012)Sriram, R.: Smart networked systems and societies: what will the future look like? In: IEEE IT Professional Conference (IT Pro). IEEE Computer Society (2014)Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., et al.: Big data: the next frontier for innovation, competition, and productivity. http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation (2011)Zacharewicz, G., Diallo, S., Ducq, Y., Agostinho, C., Jardim-Goncalves, R., Bazoun, H., Wang, Z., Doumeingts, G.: Model-based approaches for interoperability of next generation enterprise information systems: state of the art and future challenges. Inf. Syst. e-Bus. Manag. (2016). https://doi.org/10.1007/s10257-016-0317-8Jardim-Goncalves, R., Agostinho, C., Steiger-Garcao, A.: A reference model for sustainable interoperability in networked enterprises: towards the foundation of EI science base. Int. J. Comput. Integr. Manuf. 25(10) (2012). (Special Issue on Collaborative Manufacturing and Supply Chains). https://doi.org/10.1080/0951192x.2011.653831Schatsky, D., Muraskin, C.: Blockchain is coming to disrupt your industry. Deloitte (2015)Shi, J., Wan, J., Yan, H., Suo, H.: A survey of cyber-physical systems. In: International Conference on Wireless Communications and Signal Processing, pp. 1–6 (2011)Rajkumar, R.: Workshop report on foundations for innovation in cyber-physical systems. NIST. http://www.nist.gov/el/upload/CPS-WorkshopReport-1-30-13-Final.pdf/ (2013)Lee, J., Lapira, E., Yang, S. Kao, H.-A.: Predictive manufacturing system trends of next generation production systems. In: 11th IFAC Workshop on Intelligent Manufacturing Systems, vol. 11, issue 1, pp. 150–156 (2013)IDC: The digital universe of opportunities: rich data and increasing value of the internet of things. EMC Digital Universe. emc.com/collateral/analyst-reports/idc-digital-universe-2014.pdf . (2014)Baheti, R., Gill, H.: Cyber-physical systems. Impact Control Technol. 1–6 (2011)Lee, J., Bagheri, B., Kao, H.-A.: A cyber physical systems architecture for Industry 4.0-based manufacturing system. Manuf. Lett. 2015, 3, 18–23 (2014). https://doi.org/10.1016/j.mfglet.2014.12.001Bagheri, B., Lee, J.: Big future for cyber-physical manufacturing systems. Design World. http://www.designworldonline.com/big-future-for-cyber-physical-manufacturing-systems/ (2015)Lucke, D., Constantinescu, C., Westkämper, E.: Smart factory-a step towards the next generation of manufacturing. Manufacturing Systems and Technologies for the New Frontier, pp. 115–118. Springer, London (2008)Weiser, M.: The Computer for the 21st Century. Scientific American, Special Issue on Communications. Comput. Netw. (1991)Westkämper, E., Jendoubi, L., Eissele, M., Ertl, T.: Smart factory—bridging the gap between digital planning and reality. Manuf. Syst. 35(4), 307–314 (2006)Goryachev, A., Kozhevnikov, S., Kolbova, E., Kuznetsov, O., Simonova, E., Skobelev, P., Tsarev, A., Shepilov, Y.: Smart factory: intelligent system for workshop resource allocation, scheduling, optimization and controlling in real time. Adv. Mater. Res. 630, 508–513 (2012)Agostinho, C., Marques-Lucena, C., Sesana, M., Felic, A., Fischer, K., Rubattino, C., Sarraipa, J.: Osmosis process development for innovative product design and validation. 2015 ASME IMECE, Houston, USA (2015)Ko, J., Lee, B., Lee, K., Hong, S.G., Kim, N., Paek, J.: Sensor virtualization module: virtualizing IoT devices on mobile smartphones for effective sensor data management. Int. J. Distrib. Sens. Netw. (2015). https://doi.org/10.1155/2015/730762Guo, T., Papaioannou, T.G., Aberer, K.: Efficient indexing and query processing of model-view sensor data in the cloud. J. Big Data Res. 1, 52–65 (2014)Kumra, S., Sharma, L., Khanna, Y., Chattri, A.: Analysing an industrial automation pyramid and providing service oriented architecture. Int. J. Eng. Trends Technol. 3(5), 586–594 (2012)Endsley, M.: Design and evaluation for situational awareness enhancement. In: Proceedings of the Human Factors Society 32nd Annual Meeting. HFES, Santa Monica, pp. 97–10 (1988)Stanton, N.A., Chambers, P.R., Piggott, J.: Situational awareness and safety. Saf. Sci. 39(3), 189–204 (2001)Endsley, M.: Toward a theory of situation awareness in dynamic systems. Hum. Factors (The Journal of the Human Factors and Ergonomics Society) 37, 32–64 (1995)Bedny, G., Meister, D.: Theory of activity and situation awareness. Int. J. Cogn. Ergon. 3(1), 63–72 (1999)Smith, K., Hancock, P.A.: Situation awareness is adaptive, externally directed consciousness. Hum. Factors (The Journal of the Human Factors and Ergonomics Society) 37(1), 137–148 (1995)Ranganathan, A., Campbell, R.H.: An infrastructure for context-awareness based on first order logic. Pers. Ubiquit. Comput. 7(6), 353–364 (2003)Ning, K., Scholze, S., Marques, M., Campos, A, Neves-Silva, R. O’Sullivan, D.: A service oriented platform for context aware knowledge enhancing. In: 5th IFAC Conference on Management and Control of Production and Logistics (2010)Marques, M., Sucic, B., Vuk, T.: Context-based decision support for sustainable optimization of energy consumption. KES Trans. Sustain. Des. Manuf. 1(1), 899–910 (2014)Schneeweiss, C.: Distributed decision making in supply chain management. Int. J. Product. Econ. 84, 71–83 (2003)Alemany, M.M.E., Alarcón, F., Lario, F.C., Boj, J.J.: An application to support the temporal and spatial distributed decision-making process in supply chain collaborative planning. Comput. Ind. 62(5), 519–540 (2011). https://doi.org/10.1016/j.compind.2011.02.002Hong, I.H., Ammons, J.C., Realff, M.J.: Centralized versus decentralized decision-making for recycled material flows. Environ. Sci. Technol. 42(4), 1172–1177 (2008)Pibernik, R., Sucky, E.: An approach to inter-domain master planning in supply chains. Int. J. Product. Econ. 108, 200–212 (2007). https://doi.org/10.1016/j.ijpe.2006.12.010Lee, H., Whang, S.: Decentralized multi-echelon supply chains: incentives and information. Manag. Sci. 45(5), 633–640 (1999)Jung, H., Chen, F., Jeong, B.: Decentralized supply chain planning framework for third party logistics partnership. Comput. Ind. Eng. 55(2), 348–364 (2008). https://doi.org/10.1016/j.cie.2007.12.017Wang, K.-J., Chen, M.-J.: Cooperative capacity planning and resource allocation by mutual outsourcing using ant algorithm in a decentralized supply chain. Expert Syst. Appl. 36(2), 2831–2842 (2009)Simon, H.A.: The Science of the Artificial, 1st edn. MIT Press, Cambridge, Mass, (1969). (3rd ed. in 1996, MIT Press)Mesarovic, M.D., Masko, D., Takahara, Y.: Theory of Hierarchical Multilevel Systems. Academic Press, New York and London (1970)Camarinha-Matos, L.M., Afsarmanesh, H.J.: Collaborative networks: a new scientific discipline. J. Intell. Manuf. 16(4), 439–452 (2005)Popplewell, K., Stojanovic, N., Abecker, A., Apostolou, D., Mentzas, G., Harding, J.: Supporting adaptive enterprise collaboration through semantic knowledge services. In: Enterprise Interoperability Iii: New Challenges and Industrial Approaches, pp. 381–393 (2008). http://doi.org/10.1007/978-1-84800-221-0_30Agostinho, C., Ducq, Y., Zacharewicz, G., Sarraipa, J., Lampathaki, F., Jardim-Goncalves, R., Poler, R.: Towards a sustainable interoperability in networked enterprise information systems: trends of knowledge and model-driven technology. Accepted for Publication at Computers in Industry. http://doi.org/10.1016/j.compind.2015.07.001Agostinho, C., Jardim-Gonçalves, R.: Sustaining interoperability of networked liquid-sensing enterprises: a complex systems perspective. Annu. Rev. Control 39, 128–143 (2015). https://doi.org/10.1016/j.arcontrol.2015.03.012Weichhart, G., Molina, A., Chen, D., Whitman, L. E., Vernadat, F.: Challenges and current developments for sensing, smart and sustainable enterprise systems. Computers in Industry (2015). http://doi.org/10.1016/j.compind.2015.07.002Weichhart, G.: Supporting Interoperability for Chaotic and Complex Adaptive Enterprise Systems. On the Move to Meaningful Internet Systems: OTM 2013 Workshops. Confederated International Workshops: OTM Academy, OTM Industry Case Studies Program, ACM, EI2N, ISDE, META4eS, ORM, SeDeS, SINCOM, SMS, and SOMOCO 2013. Proceedings: LNCS 8186, 86–92. (2013). http://doi.org/10.1007/978-3-642-41033-8_14Truex, D.P., Baskerville, R., Klein, H.: Growing systems in emergent organizations. Mag. Commun. ACM CACM Homepage Arch. 42(8), 117–123 (1999)Weiberg, S.: Facilitating collaborative decision-making in six steps. International Association of Facilitators Annual Meeting, pp. 14–15 (1999)Delbecq, A.L., VandeVen, A.H.: A group process model for problem identification and program planning. J. Appl. Behav. Sci. 7, 466–492 (1971). https://doi.org/10.1177/002188637100700404Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York, USA (1980

    Bisphenol A-Mediated Suppression of LPL Gene Expression Inhibits Triglyceride Accumulation during Adipogenic Differentiation of Human Adult Stem Cells

    Get PDF
    The endocrine disrupting chemical, bisphenol A (BPA), has been shown to accelerate the rate of adipogenesis and increase the amount of triglyceride accumulation during differentiation of 3T3-L1 preadipocytes. The objective of this study was to investigate if that observation is mirrored in human primary cells. Here we investigated the effect of BPA on adipogenesis in cultured human primary adult stem cells. Continuous exposure to BPA throughout the 14 days of differentiation dramatically reduced triglyceride accumulation and suppressed gene transcription of the lipogenic enzyme, lipoprotein lipase (LPL). Results presented in the present study show for the first time that BPA can reduce triglyceride accumulation during adipogenesis by attenuating the expression of LPL gene transcription. Also, by employing image cytometric analysis rather than conventional Oil red O staining techniques we show that BPA regulates triglyceride accumulation in a manner which does not appear to effect adipogenesis per se

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    The Embodiment of Success and Failure as Forward versus Backward Movements

    Get PDF
    People often speak of success (e.g., “advance”) and failure (e.g., “setback”) as if they were forward versus backward movements through space. Two experiments sought to examine whether grounded associations of this type influence motor behavior. In Experiment 1, participants categorized success versus failure words by moving a joystick forward or backward. Failure categorizations were faster when moving backward, whereas success categorizations were faster when moving forward. Experiment 2 removed the requirement to categorize stimuli and used a word rehearsal task instead. Even without Experiment 1’s response procedures, a similar cross-over interaction was obtained (e.g., failure memorizations sped backward movements relative to forward ones). The findings are novel yet consistent with theories of embodied cognition and self-regulation
    corecore