27 research outputs found

    The Hybrid Approach to Intervention of Chronic Total Occlusions

    Get PDF
    The "hybrid" approach to chronic total occlusion (CTO) percutaneous coronary intervention (PCI) was developed to provide guidance on optimal crossing strategy selection. Dual angiography remains the cornerstone of clinical decision making in CTO PCI. Four angiographic parameters are assessed: (a) morphology of the proximal cap (clear-cut or ambiguous); (b) occlusion length; (c) distal vessel size and presence of bifurcations beyond the distal cap; and (d) location and suitability of location and suitability of a retrograde conduit (collateral channels or bypass grafts) for retrograde access. Antegrade wire escalation is favored for short (<20 mm) occlusions, usually escalating rapidly from a soft tapered-tip polymer-jacketed guidewire to a stiff polymer-jacketed or tapered-tip guidewire. Antegrade dissection/re-entry is favored in long (≄20 mm long) occlusions, trying to minimize the dissection length by re-entering into the distal true lumen immediately after the occlusion. Primary retrograde approach is preferred for lesions with an ambiguous proximal cap, poor distal target, good interventional collaterals, and heavy calcification,as well as chronic kidney disease. The "hybrid" approach advocates early change between strategies to enable CTO crossing in the most efficacious, efficient, and safe way. Several early studies are demonstrating high success and low complication rates with use of the "hybrid" approach, supporting its expanding use in CTO PCI

    An investigation of the mechanisms for strength gain or loss of geopolymer mortar after exposure to elevated temperature

    Get PDF
    When fly ash-based geopolymer mortars were exposed to a temperature of 800 °C, it was found that the strength after the exposure sometimes decreased, but at other times increased. This paper shows that ductility of the mortars has a major correlation to this strength gain/loss behaviour. Specimens prepared with two different fly ashes, with strengths ranging from 5 to 60 MPa, were investigated. Results indicate that the strength losses decrease with increasing ductility, with even strength gains at high levels of ductility. This correlation is attributed to the fact that mortars with high ductility have high capacity to accommodate thermal incompatibilities. It is believed that the two opposing processes occur in mortars: (1) further geopolymerisation and/or sintering at elevated temperatures leading to strength gain; (2) the damage to the mortar because of thermal incompatibility arising from non-uniform temperature distribution. The strength gain or loss occurs depending on the dominant process

    Fracture properties of GGBFS-blended fly ash geopolymer concrete cured in ambient temperature

    Get PDF
    Fracture characteristics are important part of concrete design against brittle failure. Recently, fly ash geopolymer binder is gaining significant interest as a greener alternative to traditional ordinary Portland cement (OPC). Hence it is important to understand the failure behaviour of fly ash based geopolymers for safe design of structures built with such materials. This paper presents the fracture properties of ambient-cured geopolymer concrete (GPC). Notched beam specimens of GPC mixtures based mainly on fly ash and a small percentage of ground granulated blast furnace slag were subjected to three-point bending test to evaluate fracture behaviour. The effect of mixture proportions on the fracture properties were compared with control as well as OPC concrete. The results show that fracture properties are influenced by the mixture compositions. Presence of additional water affected fracture properties adversely. Fracture energy is generally governed by tensile strength which correlates with compressive strength. Critical stress intensity factor varies with the variation of flexural strength. Geopolymer concrete specimens showed similar load–deflection behaviour as OPC concrete specimens. The ambient cured GPC showed relatively more ductility than the previously reported heat cured GPC, which is comparable to the OPC specimens. Fly ash based GPC achieved relatively higher fracture energy and similar values of KIC as compared to those of OPC concrete of similar compressive strength. Thus, fly ash based GPC designed for curing in ambient condition can achieve fracture properties comparable to those of normal OPC concrete

    Plastic analysis of HSC beams in flexure

    Get PDF
    Abstract This article presents an experimental study on the plastic behaviour of HSC beams in bending. Nineteen isostatic beams were tested up to failure. The loading consisted of two symmetrical concentrated forces applied approximately at thirds of the span of the beams. The main purpose of the analysis is to characterize the plastic rotation capacity in the beams’ failure section with an experimental parameter. Bearing this in mind, a global plastic analysis of the tested beams is presented. The main variables of this study are the longitudinal tensile reinforcement ratio and the compressive strength of the concrete. The results obtained here are completed with others presented before and the whole set of results is analysed and discussed. The plastic rotation capacity of the tested beams are analysed with the rules of some codes of practice. Finally, a summary of the main conclusions is presented

    Fracture properties of geopolymer paste and concrete

    No full text
    Geopolymers are an emerging type of cementitious material purported to provide an environmentally friendly alternative to Portland cement-based concrete. This paper reports the results of experimental research on fracture properties (fracture energy and brittleness) of fly ash based geopolymer concrete and paste with various mix parameters. The characteristic length of the geopolymer concrete was approximately three times less than that of ordinary Portland cement (OPC) concrete, due to an increase in tensile splitting strength of about 28%, a decrease in elastic modulus of about 22% and a decrease in fracture energy of about 24%. The difference in characteristic length is similar to that reported between high-strength and normal-strength OPC concretes, indicating that the geopolymer concrete exhibits higher brittleness than its OPC counterpart. This trend was found to be consistent between pastes and concretes, implying that the difference between geopolymer and OPC concrete is due to the type of matrix formation (geopolymerisation or hydration). For geopolymer concretes made with different mix parameters, fracture properties are closely correlated to their compressive strength
    corecore