53 research outputs found

    Cross-fertilisation in the malaria parasite Plasmodium falciparum

    Get PDF

    Editorial: Special issue avian malaria

    Get PDF
    Avian malaria parasites or haemosporidia are found in bird species worldwide. This special issue focusses on three most commonly studied genera: Haemoproteus, Plasmodium and Leucocytozoon. Seven research articles and reviews are provided to illustrate the breadth of knowledge of the diversity of avian malaria parasites in different regional habitats and across bird species, and the use of avian haemosporidian systems to examine host-parasite ecoevolutionary questions

    Characterisation of species and diversity of Anopheles gambiae Keele Colony

    Get PDF
    Anopheles gambiae sensu stricto was recently reclassified as two species, An. coluzzii and An. gambiae s.s., in wild-caught mosquitoes, on the basis of the molecular form, denoted M or S, of a marker on the X chromosome. The An. gambiae Keele line is an outbred laboratory colony strain that was developed around 12 years ago by crosses between mosquitoes from 4 existing An. gambiae colonies. Laboratory colonies of mosquitoes often have limited genetic diversity because of small starting populations (founder effect) and subsequent fluctuations in colony size. Here we describe the characterisation of the chromosomal form(s) present in the Keele line, and investigate the diversity present in the colony using microsatellite markers on chromosome 3. We also characterise the large 2La inversion on chromosome 2. The results indicate that only the M-form of the chromosome X marker is present in the Keele colony, which was unexpected given that 3 of the 4 parent colonies were probably S-form. Levels of diversity were relatively high, as indicated by a mean number of microsatellite alleles of 6.25 across 4 microsatellites, in at least 25 mosquitoes. Both karyotypes of the inversion on chromosome 2 (2La/2L+a) were found to be present at approximately equal proportions. The Keele colony has a mixed M- and S-form origin, and in common with the PEST strain, we propose continuing to denote it as an An. gambiae s.s. line

    An improved and highly sensitive microfluorimetric method for assessing susceptibility of Plasmodium falciparum to antimalarial drugs in vitro

    Get PDF
    BACKGROUND: The standard in vitro protocol currently in use for drug testing against Plasmodium falciparum, based on the incorporation of the purine [(3)H]-hypoxanthine, has two serious drawbacks. Firstly it is unsuitable for the testing of drugs that directly or indirectly impact on purine salvage or metabolism. Secondly, it relies on the use of expensive radiolabelled material, with added issues concerning detection, storage and waste disposal that make it unsuitable for use in many disease-endemic areas. Recently, the use of fluorochromes has been suggested as an alternative, but quenching of the fluorescence signal by the haemoglobin present in cultures of Plasmodium falciparum-infected erythrocytes severely limits the usefulness of this approach. METHODS: In order to resolve this problem, a new PicoGreen(®)-based procedure has been developed which incorporates additional steps to remove the interfering haemoglobin. The 50% inhibitory concentration (IC(50)) values of chloroquine and pyrimethamine against P. falciparum laboratory lines 3D7 and K1 were determined using the new protocol. RESULTS: The IC(50 )values of chloroquine and pyrimethamine against P. falciparum laboratory lines 3D7 and K1 determined with the new fluorescence-based protocol were statistically identical to those obtained using the traditional (3)H-hypoxanthine incorporation method, and consistent with literature values. CONCLUSION: The new method proved to be accurate, reproducible and sensitive, and has the advantage of being non-radioactive. The improved PicoGreen(® )method has the potential to replace traditional in vitro drug resistance assay techniques

    Susceptibility of Anopheles gambiae and Anopheles stephensi to tropical isolates of Plasmodium falciparum

    Get PDF
    Background: The susceptibility of anopheline mosquito species to Plasmodium infection is known to be variable with some mosquitoes more permissive to infection than others. Little work, however, has been carried out investigating the susceptibility of major malaria vectors to geographically diverse tropical isolates of Plasmodium falciparum aside from examining the possibility of infection extending its range from tropical regions into more temperate zones. Methods: This study investigates the susceptibility of two major tropical mosquito hosts (Anopheles gambiae and Anopheles stephensi) to P. falciparum isolates of different tropical geographical origins. Cultured parasite isolates were fed via membrane feeders simultaneously to both mosquito species and the resulting mosquito infections were compared. Results: Infection prevalence was variable with African parasites equally successful in both mosquito species, Thai parasites significantly more successful in An. stephensi, and PNG parasites largely unsuccessful in both species. Conclusion: Infection success of P. falciparum was variable according to geographical origin of both the parasite and the mosquito. Data presented raise the possibility that local adaptation of tropical parasites and mosquitoes has a role to play in limiting gene flow between allopatric parasite populations

    The regulatory genome of the malaria vector Anopheles gambiae: integrating chromatin accessibility and gene expression

    Get PDF
    Anopheles gambiae mosquitoes are primary human malaria vectors, but we know very little about their mechanisms of transcriptional regulation. We profiled chromatin accessibility by the assay for transposase-accessible chromatin by sequencing (ATAC-seq) in laboratory-reared A. gambiae mosquitoes experimentally infected with the human malaria parasite Plasmodium falciparum. By integrating ATAC-seq, RNA-seq and ChIP-seq data, we showed a positive correlation between accessibility at promoters and introns, gene expression and active histone marks. By comparing expression and chromatin structure patterns in different tissues, we were able to infer cis-regulatory elements controlling tissue-specific gene expression and to predict the in vivo binding sites of relevant transcription factors. The ATAC-seq assay also allowed the precise mapping of active regulatory regions, including novel transcription start sites and enhancers that were annotated to mosquito immune-related genes. Not only is this study important for advancing our understanding of mechanisms of transcriptional regulation in the mosquito vector of human malaria, but the information we produced also has great potential for developing new mosquito-control and anti-malaria strategies

    The impact of storage conditions on human stool 16S rRNA microbiome composition and diversity

    Get PDF
    Background: Multiple factors can influence stool sample integrity upon sample collection. Preservation of faecal samples for microbiome studies is therefore an important step, particularly in tropical regions where resources are limited and high temperatures may significantly influence microbiota profiles. Freezing is the accepted standard to preserve faecal samples however, cold chain methods are often unfeasible in fieldwork scenarios particularly in low and middle-income countries and alternatives are required. This study therefore aimed to address the impact of different preservative methods, time-to-freezing at ambient tropical temperatures, and stool heterogeneity on stool microbiome diversity and composition under real-life physical environments found in resource-limited fieldwork conditions. Methods: Inner and outer stool samples collected from one specimen obtained from three children were stored using different storage preservation methods (raw, ethanol and RNAlater) in a Ugandan field setting. Mixed stool was also stored using these techniques and frozen at different time-to-freezing intervals post-collection from 0–32 h. Metataxonomic profiling was used to profile samples, targeting the V1–V2 regions of 16S rRNA with samples run on a MiSeq platform. Reads were trimmed, combined and aligned to the Greengenes database. Microbial diversity and composition data were generated and analysed using Quantitative Insights Into Microbial Ecology and R software. Results: Child donor was the greatest predictor of microbiome variation between the stool samples, with all samples remaining identifiable to their child of origin despite the stool being stored under a variety of conditions. However, significant differences were observed in composition and diversity between preservation techniques, but intra-preservation technique variation was minimal for all preservation methods, and across the time-to-freezing range (0–32 h) used. Stool heterogeneity yielded no apparent microbiome differences. Conclusions: Stool collected in a fieldwork setting for comparative microbiome analyses should ideally be stored as consistently as possible using the same preservation method throughout

    New synchronization method for <i>Plasmodium falciparum</i>

    Get PDF
    &lt;b&gt;Background&lt;/b&gt;: Plasmodium falciparum is usually asynchronous during in vitro culture. Although various synchronization methods are available, they are not able to narrow the range of ages of parasites. A newly developed method is described that allows synchronization of parasites to produce cultures with an age range as low as 30 minutes. &lt;b&gt;Methods&lt;/b&gt;: Trophozoites and schizonts are enriched using Plasmion. The enriched late stage parasites are immobilized as a monolayer onto plastic Petri dishes using concanavalin A. Uninfected erythrocytes are placed onto the monolayer for a limited time period, during which time schizonts on the monolayer rupture and the released merozoites invade the fresh erythrocytes. The overlay is then taken off into a culture flask, resulting in a highly synchronized population of parasites. &lt;b&gt;Results&lt;/b&gt;: Plasmion treatment results in a 10- to 13-fold enrichment of late stage parasites. The monolayer method results in highly synchronized cultures of parasites where invasion has occurred within a very limited time window, which can be as low as 30 minutes. The method is simple, requiring no specialized equipment and relatively cheap reagents. &lt;b&gt;Conclusions&lt;/b&gt;: The new method for parasite synchronization results in highly synchronized populations of parasites, which will be useful for studies of the parasite asexual cell cycle

    Quantification of female and male Plasmodium falciparum gametocytes by reverse transcriptase quantitative PCR

    Get PDF
    The transmission of malaria parasites depends on the presence of sexual stages (gametocytes) in the blood, making the ratio and densities of female and male gametocytes important determinants of parasite fitness. This manuscript describes the development of reverse transcriptase quantitative PCR (RT-qPCR) assays to separately quantify mature female and male gametocytes of the human malaria parasite Plasmodium falciparum, and reveals that Pfs25 mRNA is expressed only in female gametocytes. The female (Pfs25) and male (Pfs230p) gametocyte specific RT-qPCR assays have lower detection limits of 0.3 female and 1.8 male gametocytes per microlitre of blood, respectively, making them more sensitive than microscopy. Accurate quantification of the ratio and densities of female and male gametocytes will increase understanding of P. falciparum transmission and improve the evaluation of transmission blocking interventions

    The impact of low erythrocyte density in human blood on the fitness and energetic reserves of the African malaria vector Anopheles gambiae

    Get PDF
    Background Anaemia is a common health problem in the developing world. This condition is characterized by a reduction in erythrocyte density, primarily from malnutrition and/or infectious diseases such as malaria. As red blood cells are the primary source of protein for haematophagous mosquitoes, any reduction could impede the ability of mosquito vectors to transmit malaria by influencing their fitness or that of the parasites they transmit. The aim of this study was to determine the impact of differences in the density of red blood cells in human blood on malaria vector (Anopheles gambiae sensu stricto) fitness. The hypotheses tested are that mosquito vector energetic reserves and fitness are negatively influenced by reductions in the red cell density of host human blood meals commensurate with those expected from severe anaemia. Methods Mosquitoes (An. gambiae s.s.) were offered blood meals of different packed cell volume(PCV) of human blood consistent with those arising from severe anaemia (15%) and normalPCV (50%). Associations between mosquito energetic reserves (lipid, glucose and glycogen)and fitness measures (reproduction and survival) and blood meal PCV were investigated. Results The amount of protein that malaria vectors acquired from blood feeding (indexed by haematin excretion) was significantly reduced at low blood PCV. However, mosquitoes feeding on blood of low PCV had the same oviposition rates as those feeding on blood of normal PCV, and showed an increase in egg production of around 15%. The long-term survival of An. gambiae s.s was reduced after feeding on low PCV blood, but PCV had no significant impact on the proportion of mosquitoes surviving through the minimal period required to develop and transmit malaria parasites (estimated as 14 days post-blood feeding). The impact of blood PCV on the energetic reserves of mosquitoes was relatively minor. Conclusions These results suggest that feeding on human hosts whose PCV has been depleted due to severe anaemia does not significantly reduce the fitness or transmission potential of malaria vectors, and indicates that mosquitoes may be able exploit resources for reproduction more efficiently from blood of low rather than normal PCV
    corecore