2,276 research outputs found

    Accelerated Sizing of a Power Split Electrified Powertrain

    Get PDF
    Component sizing generally represents a demanding and time-consuming task in the development process of electrified powertrains. A couple of processes are available in literature for sizing the hybrid electric vehicle (HEV) components. These processes employ either time-consuming global optimization techniques like dynamic programming (DP) or near-optimal techniques that require iterative and uncertain tuning of evaluation parameters like the Pontryagin's minimum principle (PMP). Recently, a novel near-optimal technique has been devised for rapidly predicting the optimal fuel economy benchmark of design options for electrified powertrains. This method, named slope-weighted energy-based rapid control analysis (SERCA), has been demonstrated producing results comparable to DP, while limiting the associated computational time by near two orders of magnitude. In this paper, sizing parameters for a power split electrified powertrain are considered that include the internal combustion engine size, the two electric motor/generator sizes, the transmission ratios, and the final drive ratio. The SERCA approach is adopted to rapidly evaluate the fuel economy capabilities of each sizing option in various driving missions considering both type-approval drive cycles and real-world driving profiles. While screening out for optimal sizing options, the implemented methodology includes drivability criteria along with fuel economy potential. Obtained results will demonstrate the agility of the developed sizing tool in identifying optimal sizing options compared to state-of-the-art sizing tools for electrified powertrains

    Mechanical thrombectomy in acute basilar artery stroke: a systematic review and Meta-analysis of randomized controlled trials

    Get PDF
    Background: The evidence for mechanical thrombectomy in acute basilar artery occlusion has until now remained inconclusive with basilar artery strokes associated with high rates of death and disability. This systematic review and meta-analysis will summarize the available evidence for the effectiveness of mechanical thrombectomy in acute basilar artery occlusion compared to best medical therapy. Methods: We conducted a systematic review and meta-analysis of randomized controlled trials using Embase, Medline and the Cochrane Central Register of Controlled Trials (CENTRAL). We calculated risk ratios (RRs) and 95% confidence intervals (CIs) to summarize the effect estimates for each outcome. Results: We performed a random effects (Mantel-Haenszel) meta-analysis of the four included randomized controlled trials comprising a total of 988 participants. We found a statistically significant improvement in the rates of those with a good functional outcome (mRS 0–3, RR 1.54, 1.16–2.06, p = 0.003) and functional independence (mRS 0–2, RR 1.69, 1.05–2.71, p = 0.03) in those who were treated with thrombectomy when compared to best medical therapy alone. Thrombectomy was associated with a higher level of sICH (RR 7.12, 2.16–23.54, p = 0.001) but this was not reflected in a higher mortality rate, conversely the mortality rate was significantly lower in the intervention group (RR 0.76, 0.65–0.89, p = 0.0004). Conclusions: Our meta-analysis of the recently presented randomized controlled studies is the first to confirm the disability and mortality benefit of mechanical thrombectomy in basilar artery stroke

    MicroWalk: A Framework for Finding Side Channels in Binaries

    Full text link
    Microarchitectural side channels expose unprotected software to information leakage attacks where a software adversary is able to track runtime behavior of a benign process and steal secrets such as cryptographic keys. As suggested by incremental software patches for the RSA algorithm against variants of side-channel attacks within different versions of cryptographic libraries, protecting security-critical algorithms against side channels is an intricate task. Software protections avoid leakages by operating in constant time with a uniform resource usage pattern independent of the processed secret. In this respect, automated testing and verification of software binaries for leakage-free behavior is of importance, particularly when the source code is not available. In this work, we propose a novel technique based on Dynamic Binary Instrumentation and Mutual Information Analysis to efficiently locate and quantify memory based and control-flow based microarchitectural leakages. We develop a software framework named \tool~for side-channel analysis of binaries which can be extended to support new classes of leakage. For the first time, by utilizing \tool, we perform rigorous leakage analysis of two widely-used closed-source cryptographic libraries: \emph{Intel IPP} and \emph{Microsoft CNG}. We analyze 1515 different cryptographic implementations consisting of 112112 million instructions in about 105105 minutes of CPU time. By locating previously unknown leakages in hardened implementations, our results suggest that \tool~can efficiently find microarchitectural leakages in software binaries
    corecore