529 research outputs found

    Fabrication and property study of plasma sprayed alumina coatings and magnetron sputtered multilayers

    Get PDF
    In this study, air or atmospheric plasma spraying (APS), one of thermal spraying processes, was used to produce alumina coatings and single splats. Nanoindentation technique was used to measure the mechanical properties, such as hardness and elastic modulus, of APS alumina coatings and single splats. The detailed procedures to calculate elastic modulus and hardness, and testing parameters for nanoindentation have been provided. This study revealed that the phase combination of α-Al2O3 and γ-Al2O3 played an important role in the scattering distribution of nanoindentation results on APS alumina coatings. In addition, nanoindentation technique was used to predict the phase information of the APS coatings in this study by elastic modulus comparison. Nanoindentation result confirmed disc-shaped alumina splats were γ phase, which was also consistent with the XRD result that the bottom surface of APS alumina coating was almost pure γ-Al2O3. An analytical model of nanoindentation on multilayered thin films was provided. Then, this analytical model was used to study nanoindentation response with APS alumina coatings. The analytical results were compared with experimental data and used to guide nanoindentation experimental parameters setup. Reactive Al/Ni multilayered thin films were deposited by DC magnetron sputtering. Reactive Al/Ni multilayer foils can be used as local heat sources to melt solder or braze layers and thus bond different components. Performance of reactive Al/Ni multilayered thin films was studied under 1D, 2D and 3D configurations using multiphysics based numerical simulations. Temperature evolution during the reaction process was simulated. The simulation result showed both localized heating and rapid cooling during reaction. Alumina thin films were fabricated by DC reactive magnetron sputtering. The hysteresis experiment has been carried out to find the suitable oxygen flow rate. The XRD analyses showed that the deposited aluminum oxide thin films were amorphous since no reflections of crystallized oxide could be observed. The stoichiometry of the aluminum oxide thin films was measured by XPS. The XPS analyses gave the O/Al ratio of 1.59, while the exact ratio is 1.50 corresponding to the stoichiometric Al2O3

    “Crisis” or “opportunity”? COVID-19 pandemic's impact on environmentally sound invention efficiency in China

    Get PDF
    IntroductionThe environmentally sound invention (ESI) is a “bridge” between environmental sound technologies (ESTs) and green productions. This study investigates the COVID-19 pandemic's impact on ESI efficiency using a multi-methods model in three stages.MethodsThe ESI efficiency is measured using the Slack-Based Measure (SBM) method in the first stage. By excluding the environmental effect of the pandemic on each province using the stochastic frontier analysis (SFA) model's results in the second stage, this study compares the ESI efficiency change with or without the influence of the pandemic in the third stage.ResultsThe results show that the pandemic can be a “crisis” in the short term, but an “opportunity” in the long term. First, the SBM efficiency results in the first stage show a decrease in the number of the average efficient provinces in which the pandemic is more severe during 2020-2021. Second, results of the spatial Tobit and SFA models provide evidence that the COVID-19 pandemic negatively impacts the ESI efficiency during 2020, this impact is decreasing in 2021, and this impact has a spatial diffusion effect.DiscussionBased on these results, this study discussed the theoretical and political implications. This paper enriches the knowledge of ESTs research and development by proposing a three-stage approach with multi-methods to investigate the influence of the pandemic's impact on ESI efficiency

    Seed Heteromorphism: An Important Adaptation of Halophytes for Habitat Heterogeneity

    Get PDF
    Seed germination is a very critical and important step for seedling establishment under saline environments, as high level of salinity in the soil can prevent seed germination. However halophytes exhibit an interesting mechanism to cope with salt stress. Many halophytes produce heteromorphic seeds, which have different dormancy and germination behavior under saline conditions. This characteristic is related to the structural and physiological differences among heteromorphic seeds. It was unclear that how heteromorphic seeds differently accumulate organic and inorganic substances under saline conditions, and what are the physiological and molecular mechanisms involved in the production of heteromorphic seeds, and in the development of transgenerational plasticity in heteromorphic seeds. In the current brief review, dormancy and germination and the possible role of seed coat and storage compounds in this process of heteromorphic seeds development have been discussed. Moreover, the role of maternal effects on heteromorphic seeds production under saline environments and growth and reproduction capability of the descendants from them have been highlighted

    KMT2A promotes melanoma cell growth by targeting hTERT signaling pathway.

    Get PDF
    Melanoma is an aggressive cutaneous malignancy, illuminating the exact mechanisms and finding novel therapeutic targets are urgently needed. In this study, we identified KMT2A as a potential target, which promoted the growth of human melanoma cells. KMT2A knockdown significantly inhibited cell viability and cell migration and induced apoptosis, whereas KMT2A overexpression effectively promoted cell proliferation in various melanoma cell lines. Further study showed that KMT2A regulated melanoma cell growth by targeting the hTERT-dependent signal pathway. Knockdown of KMT2A markedly inhibited the promoter activity and expression of hTERT, and hTERT overexpression rescued the viability inhibition caused by KMT2A knockdown. Moreover, KMT2A knockdown suppressed tumorsphere formation and the expression of cancer stem cell markers, which was also reversed by hTERT overexpression. In addition, the results from a xenograft mouse model confirmed that KMT2A promoted melanoma growth via hTERT signaling. Finally, analyses of clinical samples demonstrated that the expression of KMT2A and hTERT were positively correlated in melanoma tumor tissues, and KMT2A high expression predicted poor prognosis in melanoma patients. Collectively, our results indicate that KMT2A promotes melanoma growth by activating the hTERT signaling, suggesting that the KMT2A/hTERT signaling pathway may be a potential therapeutic target for melanoma
    • …
    corecore