314 research outputs found

    Insulin Responsiveness in Metabolic Syndrome after Eight Weeks of Cycle Training

    Get PDF
    Introduction Insulin resistance in obesity is decreased after successful diet and exercise. Aerobic exercise training alone was evaluated as an intervention in subjects with the metabolic syndrome. Methods Eighteen nondiabetic, sedentary subjects, 11 with the metabolic syndrome, participated in 8 wk of increasing intensity stationary cycle training. Results Cycle training without weight loss did not change insulin resistance in metabolic syndrome subjects or sedentary control subjects. Maximal oxygen consumption (V˙O2max), activated muscle AMP-dependent kinase, and muscle mitochondrial marker ATP synthase all increased. Strength, lean body mass, and fat mass did not change. The activated mammalian target of rapamycin was not different after training. Training induced a shift in muscle fiber composition in both groups but in opposite directions. The proportion of type 2x fibers decreased with a concomitant increase in type 2a mixed fibers in the control subjects, but in metabolic syndrome, type 2x fiber proportion increased and type 1 fibers decreased. Muscle fiber diameters increased in all three fiber types in metabolic syndrome subjects. Muscle insulin receptor expression increased in both groups, and GLUT4 expression increased in the metabolic syndrome subjects. The excess phosphorylation of insulin receptor substrate 1 (IRS-1) at Ser337 in metabolic syndrome muscle tended to increase further after training in spite of a decrease in total IRS-1. Conclusions In the absence of weight loss, the cycle training of metabolic syndrome subjects resulted in enhanced mitochondrial biogenesis and increased the expression of insulin receptors and GLUT4 in muscle but did not decrease the insulin resistance. The failure for the insulin signal to proceed past IRS-1 tyrosine phosphorylation may be related to excess serine phosphorylation at IRS-1 Ser337, and this is not ameliorated by 8 wk of endurance exercise training

    Using Empirical Phase Diagrams to Understand the Role of Intramolecular Dynamics in Immunoglobulin G Stability

    Get PDF
    Understanding the relationship between protein dynamics and stability is of paramount importance to the fields of biology and pharmaceutics. Clarifying this relationship is complicated by the large amount of experimental data that must be generated and analyzed if motions that exist over the wide range of timescales are to be included. To address this issue, we propose an approach that utilizes a multidimensional vector-based empirical phase diagram (EPD) to analyze a set of dynamic results acquired across a temperature-pH perturbation plane. This approach is applied to a humanized immunoglobulin G1 (IgG1), a protein of major biological and pharmaceutical importance whose dynamic nature is linked to its multiple biological roles. Static and dynamic measurements are used to characterize the IgG and to construct both static and dynamic empirical phase diagrams. Between pH 5 and 8, a single, pH-dependent transition is observed that corresponds to thermal unfolding of the IgG. Under more acidic conditions, evidence exists for the formation of a more compact, aggregation resistant state of the immunoglobulin, known as A-form. The dynamics-based EPD presents a considerably more detailed pattern of apparent phase transitions over the temperature-pH plane. The utility and potential applications of this approach are discussed

    Hydroxychloroquine prescription trends and predictors for excess dosing per recent ophthalmology guidelines

    Get PDF
    Background Hydroxychloroquine (HCQ) retinopathy may be more common than previously recognized; recent ophthalmology guidelines have revised recommendations from ideal body weight (IBW)-based dosing to actual body weight (ABW)-based dosing. However, contemporary HCQ prescribing trends in the UK remain unknown. Methods We examined a UK general population database to investigate HCQ dosing between 2007 and 2016. We studied trends of excess HCQ dosing per ophthalmology guidelines (defined by exceeding 6.5 mg/kg of IBW and 5.0 mg/kg of ABW) and determined their independent predictors using multivariable logistic regression analyses. Results Among 20,933 new HCQ users (78% female), the proportions of initial HCQ excess dosing declined from 40% to 36% using IBW and 38% to 30% using ABW, between 2007 and 2016. Among these, 47% of women were excess-dosed (multivariable OR 12.52; 95% CI 10.99–14.26) using IBW and 38% (multivariable OR 1.98; 95% CI,1.81–2.15) using ABW. Applying IBW, 37% of normal and 44% of obese patients were excess-dosed; however, applying ABW, 53% of normal and 10% of obese patients were excess-dosed (multivariable ORs = 1.61 and 0.1 (reference = normal); both p < 0.01). Long-term HCQ users showed similar excess dosing. Conclusion A substantial proportion of HCQ users in the UK, particularly women, may have excess HCQ dosing per the previous or recent weight-based guidelines despite a modest decline in recent years. Over half of normal-BMI individuals were excess-dosed per the latest guidelines. This implies the potential need to reduce dosing for many patients but also calls for further research to establish unifying evidence-based safe and effective dosing strategies

    Impact of Experience Corps® Participation on Children’s Academic Achievement and School Behavior

    Get PDF
    This article reports on the impact of the Experience Corps® (EC) Baltimore program, an intergenerational, school-based program aimed at improving academic achievement and reducing disruptive school behavior in urban, elementary school students in Kindergarten through third grade (K-3). Teams of adult volunteers aged 60 and older were placed in public schools, serving 15 h or more per week, to perform meaningful and important roles to improve the educational outcomes of children and the health and well-being of volunteers. Findings indicate no significant impact of the EC program on standardized reading or mathematical achievement test scores among children in grades 1–3 exposed to the program. K-1st grade students in EC schools had fewer principal office referrals compared to K-1st grade students in matched control schools during their second year in the EC program; second graders in EC schools had fewer suspensions and expulsions than second graders in non-EC schools during their first year in the EC program. In general, both boys and girls appeared to benefit from the EC program in school behavior. The results suggest that a volunteer engagement program for older adults can be modestly effective for improving selective aspects of classroom behavior among elementary school students in under-resourced, urban schools, but there were no significant improvements in academic achievement. More work is needed to identify individual- and school-level factors that may help account for these results

    Presidential Commission on the Supreme Court of the United States Final Report

    Get PDF
    On April 9, 2021, President Joseph R. Biden, Jr. issued Executive Order 14023 establishing this Commission, to consist of “individuals having experience with and knowledge of the Federal judiciary and the Supreme Court of the United States.” The Order charged the Commission with producing a report for the President that addresses three sets of questions. First, the Report should include “[a]n account of the contemporary commentary and debate about the role and operation of the Supreme Court in our constitutional system and about the functioning of the constitutional process by which the President nominates and, by and with the advice and consent of the Senate, appoints Justices to the Supreme Court.” Second, the Report should consider the “historical background of other periods in the Nation’s history when the Supreme Court’s role and the nominations and advice-and-consent process were subject to critical assessment and prompted proposals for reform.” Third, the Report should provide an analysis of the principal arguments for and against particular proposals to reform the Supreme Court, “including an appraisal of [their] merits and legality,” and should be informed by “a broad spectrum of ideas.” The Report begins by explaining the genesis of today’s Court reform debate, including by identifying developments that gave rise to President Biden’s decision to issue the April 2021 Executive Order, particularly the debates surrounding the most recent nominations. This Introduction emphasizes that the Court’s composition and jurisprudence long have been subjects of public controversy and debate in the nation’s civic life: The Court serves as a crucial guardian of the rule of law and also plays a central role in major social and political conflicts. Its decisions have profound effects on the life of the nation. Though conflict surrounding the processes by which the President nominates and the Senate confirms Justices is not new, it has become more intensely partisan in recent years. The Introduction also articulates three common and interrelated ideas frequently invoked in reform debates and throughout the Chapters of the Report: the importance of protecting or enhancing the Court’s legitimacy; the role of judicial independence in our system of government; and the value of democracy and its relationship to the Supreme Court’s decisionmaking. These important ideas can mean different things to different people. The Introduction discusses the range of meanings ascribed to these terms, with the aim of clarifying how they are deployed in arguments for and against reform

    Deep Sequencing of Pyrethroid-Resistant Bed Bugs Reveals Multiple Mechanisms of Resistance within a Single Population

    Get PDF
    A frightening resurgence of bed bug infestations has occurred over the last 10 years in the U.S. and current chemical methods have been inadequate for controlling this pest due to widespread insecticide resistance. Little is known about the mechanisms of resistance present in U.S. bed bug populations, making it extremely difficult to develop intelligent strategies for their control. We have identified bed bugs collected in Richmond, VA which exhibit both kdr-type (L925I) and metabolic resistance to pyrethroid insecticides. Using LD50 bioassays, we determined that resistance ratios for Richmond strain bed bugs were ∼5200-fold to the insecticide deltamethrin. To identify metabolic genes potentially involved in the detoxification of pyrethroids, we performed deep-sequencing of the adult bed bug transcriptome, obtaining more than 2.5 million reads on the 454 titanium platform. Following assembly, analysis of newly identified gene transcripts in both Harlan (susceptible) and Richmond (resistant) bed bugs revealed several candidate cytochrome P450 and carboxylesterase genes which were significantly over-expressed in the resistant strain, consistent with the idea of increased metabolic resistance. These data will accelerate efforts to understand the biochemical basis for insecticide resistance in bed bugs, and provide molecular markers to assist in the surveillance of metabolic resistance

    Neuropsychiatric events in systemic lupus erythematosus: a longitudinal analysis of outcomes in an international inception cohort using a multistate model approach.

    Get PDF
    OBJECTIVES: Using a reversible multistate model, we prospectively examined neuropsychiatric (NP) events for attribution, outcome and association with health-related quality of life (HRQoL), in an international, inception cohort of systemic lupus erythematosus (SLE) patients. METHODS: Annual assessments for 19 NP events attributed to SLE and non-SLE causes, physician determination of outcome and patient HRQoL (short-form (SF)-36 scores) were measured. Time-to-event analysis and multistate modelling examined the onset, recurrence and transition between NP states. RESULTS: NP events occurred in 955/1827 (52.3%) patients and 592/1910 (31.0%) unique events were attributed to SLE. In the first 2 years of follow-up the relative risk (95% CI) for SLE NP events was 6.16 (4.96, 7.66) and non-SLE events was 4.66 (4.01, 5.43) compared with thereafter. Patients without SLE NP events at initial assessment had a 74% probability of being event free at 10 years. For non-SLE NP events the estimate was 48%. The majority of NP events resolved over 10 years but mortality was higher in patients with NP events attributed to SLE (16%) versus patients with no NPSLE events (6%) while the rate was comparable in patients with non-SLE NP events (7%) compared with patients with no non-SLE events (6%). Patients with NP events had lower SF-36 summary scores compared with those without NP events and resolved NP states (p<0.001). CONCLUSIONS: NP events occur most frequently around the diagnosis of SLE. Although the majority of events resolve they are associated with reduced HRQoL and excess mortality. Multistate modelling is well suited for the assessment of NP events in SLE

    Controlling the Response: Predictive Modeling of a Highly Central, Pathogen-Targeted Core Response Module in Macrophage Activation

    Get PDF
    We have investigated macrophage activation using computational analyses of a compendium of transcriptomic data covering responses to agonists of the TLR pathway, Salmonella infection, and manufactured amorphous silica nanoparticle exposure. We inferred regulatory relationship networks using this compendium and discovered that genes with high betweenness centrality, so-called bottlenecks, code for proteins targeted by pathogens. Furthermore, combining a novel set of bioinformatics tools, topological analysis with analysis of differentially expressed genes under the different stimuli, we identified a conserved core response module that is differentially expressed in response to all studied conditions. This module occupies a highly central position in the inferred network and is also enriched in genes preferentially targeted by pathogens. The module includes cytokines, interferon induced genes such as Ifit1 and 2, effectors of inflammation, Cox1 and Oas1 and Oasl2, and transcription factors including AP1, Egr1 and 2 and Mafb. Predictive modeling using a reverse-engineering approach reveals dynamic differences between the responses to each stimulus and predicts the regulatory influences directing this module. We speculate that this module may be an early checkpoint for progression to apoptosis and/or inflammation during macrophage activation

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    corecore