11 research outputs found

    Critical assessment of approaches for molecular docking to elucidate associations of HLA alleles with adverse drug reactions

    Get PDF
    Adverse drug reactions have been linked with genetic polymorphisms in HLA genes in numerous different studies. HLA proteins have an essential role in the presentation of self and non-self peptides, as part of the adaptive immune response. Amongst the associated drugs-allele combinations, anti-HIV drug Abacavir has been shown to be associated with the HLA-B*57:01 allele, and anti-epilepsy drug Carbamazepine with B*15:02, in both cases likely following the altered peptide repertoire model of interaction. Under this model, the drug binds directly to the antigen presentation region, causing different self peptides to be presented, which trigger an unwanted immune response. There is growing interest in searching for evidence supporting this model for other ADRs using bioinformatics techniques. In this study, in silico docking was used to assess the utility and reliability of well-known docking programs when addressing these challenging HLA-drug situations. The overall aim was to address the uncertainty of docking programs giving different results by completing a detailed comparative study of docking software, grounded in the MHC-ligand experimental structural data - for Abacavir and to a lesser extent Carbamazepine - in order to assess their performance. Four docking programs: SwissDock, ROSIE, AutoDock Vina and AutoDockFR, were used to investigate if each software could accurately dock the Abacavir back into the crystal structure for the protein arising from the known risk allele, and if they were able to distinguish between the HLA-associated and non-HLA-associated (control) alleles. The impact of using homology models on the docking performance and how using different parameters, such as including receptor flexibility, affected the docking performance were also investigated to simulate the approach where a crystal structure for a given HLA allele may be unavailable. The programs that were best able to predict the binding position of Abacavir were then used to recreate the docking seen for Carbamazepine with B*15:02 and controls alleles. It was found that the programs investigated were sometimes able to correctly predict the binding mode of Abacavir with B*57:01 but not always. Each of the software packages that were assessed could predict the binding of Abacavir and Carbamazepine within the correct sub-pocket and, with the exception of ROSIE, was able to correctly distinguish between risk and control alleles. We found that docking to homology models could produce poorer quality predictions, especially when sequence differences impact the architecture of predicted binding pockets. Caution must therefore be used as inaccurate structures may lead to erroneous docking predictions. Incorporating receptor flexibility was found to negatively affect the docking performance for the examples investigated. Taken together, our findings help characterise the potential but also the limitations of computational prediction of drug-HLA interactions. These docking techniques should therefore always be used with care and alongside other methods of investigation, in order to be able to draw strong conclusions from the given results

    Informatics investigations into anti-thyroid drug induced agranulocytosis associated with multiple HLA-B alleles

    Get PDF
    INTRODUCTION:Adverse drug reactions have been linked with HLA alleles in different studies. These HLA proteins play an essential role in the adaptive immune response for the presentation of self and non-self peptides. Anti-thyroid drugs methimazole and propylthiouracil have been associated with drug induced agranulocytosis (severe lower white blood cell count) in patients with B*27:05, B*38:02 and DRB1*08:03 alleles in different populations: Taiwanese, Vietnamese, Han Chinese and Caucasian. METHODS:In this study, informatics methods were used to investigate if any sequence or structural similarities exist between the two associated HLA-B alleles, compared with a set of "control" alleles assumed not be associated, which could help explain the molecular basis of the adverse drug reaction. We demonstrated using MHC Motif Viewer and MHCcluster that the two alleles do not have a propensity to bind similar peptides, and thus at a gross level the structure of the antigen presentation region of the two alleles are not similar. We also performed multiple sequence alignment to identify polymorphisms shared by the risk but not by the control alleles and molecular docking to compare the predicted binding poses of the drug-allele combinations. RESULTS:Two residues, Cys67 and Thr80, were identified from the multiple sequence alignments to be unique to these risk alleles alone. The molecular docking showed the poses of the risk alleles to favour the F-pocket of the peptide binding groove, close to the Thr80 residue, with the control alleles generally favouring a different pocket. The data are thus suggestive that Thr80 may be a critical residue in HLA-mediated anti-thyroid drug induced agranulocytosis, and thus can guide future research and risk assessment

    Method for Independent Estimation of the False Localization Rate for Phosphoproteomics

    Get PDF
    Phosphoproteomic methods are commonly employed to identify and quantify phosphorylation sites on proteins. In recent years, various tools have been developed, incorporating scores or statistics related to whether a given phosphosite has been correctly identified or to estimate the global false localization rate (FLR) within a given data set for all sites reported. These scores have generally been calibrated using synthetic datasets, and their statistical reliability on real datasets is largely unknown, potentially leading to studies reporting incorrectly localized phosphosites, due to inadequate statistical control. In this work, we develop the concept of scoring modifications on a decoy amino acid, that is, one that cannot be modified, to allow for independent estimation of global FLR. We test a variety of amino acids, on both synthetic and real data sets, demonstrating that the selection can make a substantial difference to the estimated global FLR. We conclude that while several different amino acids might be appropriate, the most reliable FLR results were achieved using alanine and leucine as decoys. We propose the use of a decoy amino acid to control false reporting in the literature and in public databases that re-distribute the data. Data are available via ProteomeXchange with identifier PXD028840

    Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools

    Get PDF
    Abstract The Allele Frequency Net Database (AFND, www.allelefrequencies.net) provides the scientific community with a freely available repository for the storage of frequency data (alleles, genes, haplotypes and genotypes) related to human leukocyte antigens (HLA), killer-cell immunoglobulin-like receptors (KIR), major histocompatibility complex Class I chain related genes (MIC) and a number of cytokine gene polymorphisms in worldwide populations. In the last five years, AFND has become more popular in terms of clinical and scientific usage, with a recent increase in genotyping data as a necessary component of Short Population Report article submissions to another scientific journal. In addition, we have developed a user-friendly desktop application for HLA and KIR genotype/population data submissions. We have also focused on classification of existing and new data into ‘gold–silver–bronze’ criteria, allowing users to filter and query depending on their needs. Moreover, we have also continued to expand other features, for example focussed on HLA associations with adverse drug reactions. At present, AFND contains &gt;1600 populations from &gt;10 million healthy individuals, making AFND a valuable resource for the analysis of some of the most polymorphic regions in the human genome.</jats:p

    Assessing Multiple Evidence Streams to Decide on Confidence for Identification of Post-Translational Modifications, within and Across Data Sets

    No full text
    Phosphorylation is a post-translational modification of great interest to researchers due to its relevance in many biological processes. LC-MS/MS techniques have enabled high-throughput data acquisition, with studies claiming identification and localization of thousands of phosphosites. The identification and localization of phosphosites emerge from different analytical pipelines and scoring algorithms, with uncertainty embedded throughout the pipeline. For many pipelines and algorithms, arbitrary thresholding is used, but little is known about the actual global false localization rate in these studies. Recently, it has been suggested to use decoy amino acids to estimate global false localization rates of phosphosites, among the peptide-spectrum matches reported. Here, we describe a simple pipeline aiming to maximize the information extracted from these studies by objectively collapsing from peptide-spectrum match to the peptidoform-site level, as well as combining findings from multiple studies while maintaining track of false localization rates. We show that the approach is more effective than current processes that use a simpler mechanism for handling phosphosite identification redundancy within and across studies. In our case study using eight rice phosphoproteomics data sets, 6368 unique sites were confidently identified using our decoy approach compared to 4687 using traditional thresholding in which false localization rates are unknown

    Assessing Multiple Evidence Streams to Decide on Confidence for Identification of Post-Translational Modifications, within and Across Data Sets

    No full text
    Phosphorylation is a post-translational modification of great interest to researchers due to its relevance in many biological processes. LC-MS/MS techniques have enabled high-throughput data acquisition, with studies claiming identification and localization of thousands of phosphosites. The identification and localization of phosphosites emerge from different analytical pipelines and scoring algorithms, with uncertainty embedded throughout the pipeline. For many pipelines and algorithms, arbitrary thresholding is used, but little is known about the actual global false localization rate in these studies. Recently, it has been suggested to use decoy amino acids to estimate global false localization rates of phosphosites, among the peptide–spectrum matches reported. Here, we describe a simple pipeline aiming to maximize the information extracted from these studies by objectively collapsing from peptide–spectrum match to the peptidoform-site level, as well as combining findings from multiple studies while maintaining track of false localization rates. We show that the approach is more effective than current processes that use a simpler mechanism for handling phosphosite identification redundancy within and across studies. In our case study using eight rice phosphoproteomics data sets, 6368 unique sites were confidently identified using our decoy approach compared to 4687 using traditional thresholding in which false localization rates are unknown

    Assessing Multiple Evidence Streams to Decide on Confidence for Identification of Post-Translational Modifications, within and Across Data Sets

    No full text
    Phosphorylation is a post-translational modification of great interest to researchers due to its relevance in many biological processes. LC-MS/MS techniques have enabled high-throughput data acquisition, with studies claiming identification and localization of thousands of phosphosites. The identification and localization of phosphosites emerge from different analytical pipelines and scoring algorithms, with uncertainty embedded throughout the pipeline. For many pipelines and algorithms, arbitrary thresholding is used, but little is known about the actual global false localization rate in these studies. Recently, it has been suggested to use decoy amino acids to estimate global false localization rates of phosphosites, among the peptide–spectrum matches reported. Here, we describe a simple pipeline aiming to maximize the information extracted from these studies by objectively collapsing from peptide–spectrum match to the peptidoform-site level, as well as combining findings from multiple studies while maintaining track of false localization rates. We show that the approach is more effective than current processes that use a simpler mechanism for handling phosphosite identification redundancy within and across studies. In our case study using eight rice phosphoproteomics data sets, 6368 unique sites were confidently identified using our decoy approach compared to 4687 using traditional thresholding in which false localization rates are unknown

    A method for independent estimation of false localisation rate for phosphoproteomics

    No full text
    Phosphoproteomics methods are commonly employed in labs to identify and quantify the sites of phosphorylation on proteins. In recent years, various software tools have been developed, incorporating scores or statistics related to whether a given phosphosite has been correctly identified, or to estimate the global false localisation rate (FLR) within a given data set for all sites reported. These scores have generally been calibrated using synthetic data sets, and their statistical reliability on real datasets is largely unknown. As a result, there is considerable problem in the field of reporting incorrectly localised phosphosites, due to inadequate statistical control. In this work, we develop the concept of using scoring and ranking modifications on a decoy amino acid, i.e. one that cannot be modified, to allow for independent estimation of global FLR. We test a variety of different amino acids to act as the decoy, on both synthetic and real data sets, demonstrating that the amino acid selection can make a substantial difference to the estimated global FLR. We conclude that while several different amino acids might be appropriate, the most reliable FLR results were achieved using alanine and leucine as decoys, although we have a preference for alanine due to the risk of potential confusion between leucine and isoleucine amino acids. We propose that the phosphoproteomics field should adopt the use of a decoy amino acid, so that there is better control of false reporting in the literature, and in public databases that re-distribute the data. Data are available via ProteomeXchange with identifier PXD028840

    Bisphenol A Inhibits the Transporter Function of the Blood-Brain Barrier by Directly Interacting with the ABC Transporter Breast Cancer Resistance Protein (BCRP)

    No full text
    The breast cancer resistance protein (BCRP) is an important efflux transporter in the blood-brain barrier (BBB), protecting the brain from a wide range of substances. In this study, we investigated if BCRP function is affected by bisphenol A (BPA), a high production volume chemical used in common consumer products, as well as by bisphenol F (BPF) and bisphenol S (BPS), which are used to substitute BPA. We employed a transwell-based in vitro cell model of iPSC-derived brain microvascular endothelial cells, where BCRP function was assessed by measuring the intracellular accumulation of its substrate Hoechst 33342. Additionally, we used in silico modelling to predict if the bisphenols could directly interact with BCRP. Our results showed that BPA significantly inhibits the transport function of BCRP. Additionally, BPA was predicted to bind to the cavity that is targeted by known BCRP inhibitors. Taken together, our findings demonstrate that BPA inhibits BCRP function in vitro, probably by direct interaction with the transporter. This effect might contribute to BPA's known impact on neurodevelopment
    corecore