51 research outputs found

    Special considerations in the management of adult patients with acute leukaemias and myeloid neoplasms in the COVID-19 era: recommendations from a panel of international experts

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 is a global public health crisis. Multiple observations indicate poorer post-infection outcomes for patients with cancer than for the general population. Herein, we highlight the challenges in caring for patients with acute leukaemias and myeloid neoplasms amid the COVID-19 pandemic. We summarise key changes related to service allocation, clinical and supportive care, clinical trial participation, and ethical considerations regarding the use of lifesaving measures for these patients. We recognise that these recommendations might be more applicable to high-income countries and might not be generalisable because of regional differences in health-care infrastructure, individual circumstances, and a complex and highly fluid health-care environment. Despite these limitations, we aim to provide a general framework for the care of patients with acute leukaemias and myeloid neoplasms during the COVID-19 pandemic on the basis of recommendations from international experts

    Role of neoplastic monocyte-derived fibrocytes in primary myelofibrosis

    Get PDF
    Primary myelofibrosis (PMF) is a fatal neoplastic disease characterized by clonal myeloproliferation and progressive bone marrow (BM) fibrosis thought to be induced by mesenchymal stromal cells stimulated by overproduced growth factors. However, tissue fibrosis in other diseases is associated with monocyte-derived fibrocytes. Therefore, we sought to determine whether fibrocytes play a role in the induction of BM fibrosis in PMF. In this study, we show that BM from patients with PMF harbors an abundance of clonal, neoplastic collagen- and fibronectin-producing fibrocytes. Immunodeficient mice transplanted with myelofibrosis patients’ BM cells developed a lethal myelofibrosis-like phenotype. Treatment of the xenograft mice with the fibrocyte inhibitor serum amyloid P (SAP; pentraxin-2) significantly prolonged survival and slowed the development of BM fibrosis. Collectively, our data suggest that neoplastic fibrocytes contribute to the induction of BM fibrosis in PMF, and inhibiting fibrocyte differentiation with SAP may interfere with this process

    Finding a needle in a haystack: whole genome sequencing and mutation discovery in murine models

    No full text
    Acute promyelocytic leukemia (APL) is a malignancy of the bone marrow, in which there is a deficiency of myeloid cells and an excess of immature cells called promyelocytes. APL is most commonly caused by a translocation (15:17) and expression of the promyelocytic leukemia and the retinoic receptor α (PML-RARA) fusion product; however, the events that cooperate with PML-RARA in APL pathogenesis are not well understood. In this issue of the JCI, Wartman and colleagues use an innovative approach to find other relevant mutations in APL. They performed whole genome sequencing and copy number analysis of a well-characterized APL mouse model to uncover somatic mutations in Jak1 and lysine (K)-specific demethylase 6A (Kdm6a, also known as Utx) in mice with APL and validated the ability of Jak1 mutations to cooperate with PML-RARA in APL. The findings implicate the JAK/STAT pathway in the pathogenesis of APL and illustrate the power of whole genome sequencing to identify novel disease alleles in murine models of disease
    corecore