30,093 research outputs found

    On the nature of the Lambda(1405) as a superposition of two states

    Full text link
    We use recent data on the K−p→π0π0Σ0K^- p \to \pi^0 \pi^0 \Sigma^0 reaction with the π0Σ0\pi^0 \Sigma^0 mass distribution of forming the Λ(1405)\Lambda(1405) with a peak at 1420 MeV and a relatively narrow width of Γ=38\Gamma = 38 MeV, together with those of the π−p→K0πΣ\pi^- p \to K^0 \pi \Sigma reaction to show that there are two Λ(1405)\Lambda(1405) states instead of one as so far assumed.Comment: Contribution to the PANIC05 Conference, Santa Fe, October 200

    Nuclear shape coexistence in Po isotopes: An interacting boson model study

    Get PDF
    Background: The lead region, Po, Pb, Hg, and Pt, shows up the presence of coexisting structures having different deformation and corresponding to different particle-hole configurations in the Shell Model language. Purpose: We intend to study the importance of configuration mixing in the understanding of the nuclear structure of even-even Po isotopes, where the shape coexistence phenomena are not clear enough. Method: We study in detail a long chain of polonium isotopes, 190-208Po, using the interacting boson model with configuration mixing (IBM-CM). We fix the parameters of the Hamiltonians through a least-squares fit to the known energies and absolute B(E2) transition rates of states up to 3 MeV. Results: We obtained the IBM-CM Hamiltonians and we calculate excitation energies, B(E2)'s, electric quadrupole moments, nuclear radii and isotopic shifts, quadrupole shape invariants, wave functions, and deformations. Conclusions: We obtain a good agreement with the experimental data for all the studied observables and we conclude that shape coexistence phenomenon is hidden in Po isotopes, very much as in the case of the Pt isotopes.Comment: To be published in Physical Review C. arXiv admin note: text overlap with arXiv:1312.459

    Disentangling the nuclear shape coexistence in even-even Hg isotopes using the interacting boson model

    Get PDF
    We intend to provide a consistent description of the even-even Hg isotopes, 172-200Hg, using the interacting boson model including configuration mixing. We pay special attention to the description of the shape of the nuclei and to its connection with the shape coexistence phenomenon.Comment: To appear in CGS15 conference proceedings (EPJ Web of Conferences

    The influence of intruder states in even-even Po isotopes

    Get PDF
    We study the role of intruder states and shape coexistence in the even-even 190−206^{190-206}Po isotopes, through an interacting boson model with configuration mixing calculation. We analyzed the results in the light of known systematics on various observable in the Pb region, paying special attention to the unperturbed energy systematics and quadrupole deformation. We find that shape coexistence in the Po isotopes behaves in very much the same way as in the Pt isotopes, i.e., it is somehow hidden, contrary to the situation in the Pb and the Hg isotopes.Comment: Contribution to the Nuclear Structure and Dynamics 2015 (Portorose, Slovenia) proceeding

    Note on the space group selection rule for closed strings on orbifolds

    Full text link
    It is well-known that the space group selection rule constrains the interactions of closed strings on orbifolds. For some examples, this rule has been described by an effective Abelian symmetry that combines with a permutation symmetry to a non-Abelian flavor symmetry like D4D_4 or Δ(54)\Delta(54). However, the general case of the effective Abelian symmetries was not yet fully understood. In this work, we formalize the computation of the Abelian symmetry that results from the space group selection rule by imposing two conditions only: (i) well-defined discrete charges and (ii) their conservation. The resulting symmetry, which we call the space group flavor symmetry DSD_S, is uniquely specified by the Abelianization of the space group. For all Abelian orbifolds with N=1N=1 supersymmetry we compute DSD_S and identify new cases, for example, where DSD_S contains a Z2Z_2 dark matter-parity with charges 0 and 1 for massless and massive strings, respectively.Comment: 28 pages, 1 tabl
    • …
    corecore