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Nuclear shape coexistence in Po isotopes: An interacting boson model study
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Background: The lead region, Po, Pb, Hg, and Pt, shows up the presence of coexisting structures having different
deformation and corresponding to different particle-hole configurations in the shell-model language.
Purpose: We intend to study the importance of configuration mixing in the understanding of the nuclear structure
of even-even Po isotopes, where the shape coexistence phenomena are not clear enough.
Method: We study in detail a long chain of polonium isotopes, 190–208Po, using the interacting boson model with
configuration mixing (IBM-CM). We fix the parameters of the Hamiltonians through a least-squares fit to the
known energies and absolute B(E2) transition rates of states up to 3 MeV.
Results: We obtained the IBM-CM Hamiltonians and we calculate excitation energies, B(E2)’s, electric
quadrupole moments, nuclear radii and isotopic shifts, quadrupole shape invariants, wave functions, and
deformations.
Conclusions: We obtain a good agreement with the experimental data for all the studied observables and we
conclude that shape coexistence phenomenon is hidden in Po isotopes, very much as in the case of the Pt isotopes.
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I. INTRODUCTION

Shape coexistence has been observed by now all through
the nuclear mass region, encompassing light nuclei (16O
region) [1], proceeding up to the region of very heavy nuclei
in the Pb region [2,3], and has been reviewed in a number
of papers over a period spanning about 3 decades [4–6].
Recent advances in experimental methods to explore nuclei,
removed far from the region of β-stable nuclei, have opened up
possibilities to explore the appearance and behavior of shape
coexistence in series of isotopes and isotones [7]. A wealth
of new data on energy systematics, but, more importantly,
on observables such as in-beam spectroscopy and lifetime
data [8,9], Coulomb excitation using inverse kinematics [10],
direct reactions on unstable nuclei [11], radioactive-decay
modes at the limits of nuclear stability [12], and breakup
reactions [13], have been at the basis of recognizing the rather
universal appearance of shape coexisting phenomena [6].
Moreover, measurement of the essential ground-state prop-
erties, such as masses [14], charge radii [15], and nuclear
moments [16], as well as the possibilities to study monopole
E0 transitions in nuclei [17,18], helped to complete the data
basis in such a way as to confront theoretical modeling of
nuclear structure properties in greater detail than before.

From a theoretical side, present-day methods starting from
the nuclear shell model or approaching the atomic nucleus us-
ing mean-field methods have resulted in developments of new
algorithms as well as making use of the increased computing
possibilities (see Refs. [19–21] and references therein). The
present status has evolved in a situation where the conditions
for shape coexistence to occur are becoming understood. It
looks like a balance between two opposing nuclear force
components, i.e., on one side the stabilizing effect caused
by the presence of closed shells (the monopole part), aiming
at stabilizing the nucleus into a spherical shape, and on the
other side the low-multipole (mainly quadrupole) components
redistributing protons and neutrons into a deformed shape,

is at the origin of the appearance of shape coexistence in a
given mass region. Recently, large-scale shell-model studies,
using diagonalization in a very large many-open-shell basis
in various mass regions [22] or making use of an advanced
Monte Carlo shell-model approach [21], have been carried
out. Besides, the concept to start from deformed average
potentials and calculating the total energy curves as a function
of deformation has been explored, in particular, for nuclei in
the Pb region [23–25]. However, recent studies [26], using a
microscopic approach to determine the optimal mean fields,
even going beyond bringing in the nuclear dynamics, have
given quantitative results—using both Skyrme forces [26–29]
and Gogny forces [30–34], as well as making use of a rel-
ativistic mean-field approach [35–40]—that are indicative of
the above mechanism. Moreover, attempts have been made and
are still being improved to extract a Bohr Hamiltonian [41,42]
starting from a microscopic basis [43–45].

From a microscopic shell-model point of view, the
hope to treat on equal footing the large open neu-
tron shell from N = 126 down to and beyond the mid-
shell N = 104 region, jointly with the valence protons
in the Pt, Hg, Po, and Rn nuclei, even including pro-
ton multiparticle multihole (mp-nh) excitations across the
Z = 82 shell closure, is beyond present computational pos-
sibilities. The truncation of the model space, however, by
concentrating on nucleon pair modes (mainly 0+ and 2+
coupled pairs, to be treated as bosons within the interacting
boson approximation (IBM) [46]), has made calculations fea-
sible, even including pair excitations across the Z = 82 shell
closure [47,48] in the Pb region in a transparent way. More in
particular, the Pb nuclei have been extensively studied, giving
rise to bands with varying collectivity depending on the nature
of the excitations treated in the model space [49–54]. More
recently, detailed studies of the Pt nuclei have been carried
out [55–61], as well as for the Hg nuclei [62–64], in an attempt
to describe the large amount of low-lying states and their E2
decay properties, explicitly including particle-hole excitations
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across the Z = 82 shell closure. A novel mapping procedure to
determine an algebraic IBM Hamiltonian has been proposed by
Nomura et al. [65,66]. In contrast to the standard shell-model
to boson-model mapping method [67,68], it has been shown
that an IBM Hamiltonian can be determined, mapping a
self-consistent mean-field total energy surface E(β,γ ) (over
the full β-γ plane) onto the corresponding IBM mean-field
energy. Very recently, this method was extended to include
intruder mp-nh configurations, with a detailed coverage of the
Pt, Pb, and Hg isotopes [69–72].

Recently, a lot of new experimental results have become
available in the Pb region, encompassing, besides the Pb
isotopes, the nearby Hg, Pt, and Po isotopes (see Sec. II for
references on the Po nuclei). In both the Pb and the Hg isotopes,
there is overwhelming information [excitation energies, B(E2)
values, isotopic shifts, α-hindrance factors, etc.] by now that
highlights the presence of shape coexistence, which is associ-
ated with the presence of prolate, oblate, and spherical bands
in the case of the Pb nuclei and with the presence of a prolate
deformed band together with a less deformed oblate structure,
forming the yrast band in the case of Hg [8]. Whereas the
intruder bands are easily singled out for the Pb and Hg nuclei
in which the excitation energies display the characteristic
parabolic pattern with minimal excitation energy around the
N = 104 neutron midshell nucleus, this structure is not imme-
diate in both the Pt and the Po nuclei. Therefore, in the present
paper, we carry out an extensive study of the Po nuclei within
the context of the IBM, including 2p-2h excitations across the
Z = 82 proton closed shell, thereby extending the regular IBM
model space, containing N bosons, with the intruder N + 2
IBM model space, also taking into account the interaction
between both subspaces, which is called the interacting boson
model with configuration mixing (IBM-CM) approach.

The paper is organized as follows. In Sec. II, we describe the
experimental situation in the Po isotopes, whereas in Sec. III,
we present the various theoretical approaches that have been
used in the literature to study the Po nuclei. In Sec. IV, we
succinctly present the IBM-CM formalism as well as the
fitting methodology used; here, we also discuss the main
outcome of the calculations on energy spectra and electric
quadrupole properties [B(E2) values, quadrupole moments]
and its comparison with the available experimental data. In
Sec. V, we discuss the results on α-hindrance factors as well
as on the isotopic shifts. Sec. VI is devoted to the description of
nuclear deformation properties of Po nuclei as derived from the
IBM-CM mean-field energy, from the study of the quadrupole
shape invariants and from the study of the kinematic moments
of inertia, characterizing the yrast band structure of Po nuclei.
Moreover, we compare the present results with the nearby Pb,
Hg, and Pt isotopes. Finally, in Sec. VII, both the main conclu-
sions as well as an outlook for further studies are presented.

II. EXPERIMENTAL DATA: SITUATION
IN THE Po NUCLEI

The even-even Po nuclei span a large region of isotopes,
starting with the lightest presently known 190Po nucleus (N =
106), passing through the end of the shell, 210Po, all the way
up to N = 134 at 218Po.
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FIG. 1. (Color online) Experimental energy-level systematics for
the Po isotopes. Only levels up to Ex ∼ 3.0 MeV are shown. The
symbol ↑ indicates the beginning of the region where extra levels of
low spin, indicated with spin, parity assignments between brackets
in the Nuclear Data Sheet references, start appearing. The symbol ∗
for the 8+ level for mass A = 202 indicates that the energy is within
an interval �40 keV above the 6+ level. Dashed lines connect states
that are supposed to have a similar structure.

Many experimental complementary methods have been
used to disentangle the properties over such a large interval.
These nuclei are extensively covered in the Nuclear Data
Sheet reviews for A = 190 [73], A = 192 [74], A = 194 [75],
A = 196 [76], A = 198 [77], A = 200 [78], A = 202 [79],
A = 204 [80], A = 206 [81], A = 208 [82], A = 210 [83],
and span the region we concentrate on in the present paper.

The experimental information (up to the end of the 1990s),
down to A = 192 (N = 108), was obtained mainly using
early fusion-evaporation reactions, followed by in-beam γ -ray
spectroscopy, with, in particular, information on energy spectra
systematics for A = 192, 194 [84–86], A = 194 [87], A =
196, 198 [88], A = 196, 198 [89], A = 198 [90], and A = 198,
200 [91]. This particular part of the mass region has also been
analyzed using α- and β-decay studies of mass-separated Rn
and At nuclei, resulting in information about excited 0+ states
in the isotopes with A = 196–202 [92] and in energy spectra
of the isotopes A = 200, 202 [93], as well as making use of
α-decay studies from the Rn nuclei for A = 198 [94]. α-decay
studies, moving from the Po nuclei into the Pb nuclei, have
been a major fingerprint, in particular, in view of the shape
coexisting structure in the daughter Pb nuclei. There exists an
extensive set of results that has been accumulated during a
period of about 2 decades [95–109].

It was observed that mass A = 194 (see Fig. 1) indi-
cated a break in the energy scale observed for the heavier
masses, where the energy of the 2+

1 level is typically of
the order of ∼600–650 keV, going down to an energy
of about ∼ 300 keV, therefore, dropping by a factor two.
More recently, experimental studies spanning the 1999–2009
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period have been performed at the Department of Physics
at the University of Jyväskylä using the recoil-decay-tagging
(RDT) technique, studying prompt and delayed γ rays down
to mass A = 190 [110,111]. Moreover, lifetimes could be
derived making use of the RDT technique in recoil distance
Doppler-shift experiments for masses A = 194 [112,113]
and A = 196 [114]. The experimental situation for the Po
isotones down to A = 190 has been summarized by Julin
et al. [8]. Very recently, Coulomb excitation experiments
have been performed using postaccelerated 196,198,200,202Po
beams at REX-ISOLDE, resulting in an important set of
specific reduced E2 matrix elements, connecting the 0+

1
ground state with the excited 2+

1,2 states (as well as for
other combinations) [115]. Charge radii have been measured
for both the odd-A A = 191–211 Po nuclei [116,117] and
the even-even A = 192–210, 216, and 218 Po nuclei [118],
extending the ground-state information in a major way.

III. THEORETICAL APPROACHES: THE EVOLVING
SITUATION IN THE Po NUCLEI

The experimental situation, as discussed before, hints for
a particular change in the structure moving down in mass
number A. The energy scale, which starts at the N = 126
closed neutron shell, set by the seniority scheme [119–121],
with a first excited 2+ state at 1181 keV, quickly sets in a rather
constant value of the 2+ energy at ∼650 keV. However, over
the span of a few mass units one notices (i) a quick drop of
the first excited 0+ from mass A = 202 (1758 keV), down to
mass A = 196 (558 keV), and (ii) a considerable drop in the
2+

1 energy, starting at mass A = 196 (at 463 keV) and setting
into a new energy scale (of ∼250 keV) for the lower masses
(known only down to A = 190 at present).

In the early works of Refs. [87,89] a description using a
particle-core coupling model approach was proposed, resulting
from coupling the two proton particles with a vibrational core
system. With the experimental information on masses A =
196 and later A = 194, a systematic study was carried out
in Refs. [122,123] for the mass region A = 210 down to A =
194. Here it was pointed out that the quick drop of, in particular,
the first excited 0+

2 state, arose because of the need to use an
enhanced particle-core coupling strength. This point was later
stressed by Oros et al. [124], who showed that a consistent
set of coupling strengths was unable to describe the observed
properties, in particular, below mass A = 200.

Calculations using a deformed average field [125] indicated
that in studying the energy surfaces, while at mass A = 196,
a soft spherical result was obtained, at mass A = 192, an
oblate minimum appeared, becoming the lowest minimum
at a value of ε = −0.2 and an almost degenerate situation
at A = 190 with both oblate and prolate minima with both
ε values of ∼0.2. Energy surface calculations, covering the
β-γ plane were carried out using a deformed Woods-Saxon
potential, resulting in the presence of three minima in the mass
region A = 190 to A = 186 [124]. The above results were
confirmed later by Smirnova et al. [126], this time using a
self-consistent Hartree-Fock-Bogoliubov approach using the
SLy4 Skyrme force [26], indicating rather wide minima in
A = 196–194, a lowest oblate minimum at A = 192 and

A = 190, and a turning into prolate at A = 188. Triggered
by the new data on masses A = 196 and A = 194, more
detailed beyond-mean-field studies were carried out [112–
114], highlighting a detailed comparison on energy spectra
and E2 properties, indicating the interplay of an oblate and
a more spherical structure (vibrational). In their analysis, the
authors point towards a rather pure intruder character of the
whole yrast band, including the ground state. In our analysis
(see Sec. IV E), we come to the conclusion that the ground
state exhibits a rather mixed character instead of being of
pure intruder nature. More recently, a full study of even-even
nuclei in the Pb region [127], showing specific results for
the Po nuclei, is presented. It is interesting to point out that
high-spin isomers have been studied in the Po, too, making use
of a deformed Woods-Saxon potential, showing the effects of
deformation on the specific excitation energy [128,129].

Most of the mean-field studies point towards the existence
of rather complex energy surfaces with the presence of several
minima, although in many cases separated by small barriers.
Anyhow, a common denominator is the presence of a regular
configuration, slightly deformed (oblate or γ unstable) or
spherical, coexisting with an intruder configuration of prolate
nature, corresponding with a larger deformation as compared
with the regular configuration. The lack of full calculations
in the β-γ plane makes difficult to formulate a more precise
conclusion about the particular shape of the coexisting minima.

Within the framework of the shell model and allowing for
both the full neutron open shell, covering N = 126 to N = 82,
and the proton mp-mh excitations across the Z = 82 closed
shell, the calculations are unfeasible nowadays. Therefore, a
truncated approach can be used starting from the standard IBM
allowing for the presence of extra pairs. This method, called
IBM-CM was proposed by Duval and Barrett [47,48] and has
been used in the study of shape coexistence in various mass
regions. Some early studies were carried out within the idea
of a possible symmetry to be used within an extended version
of the IBM, including particle-hole pairs (namely intruder I
spin [130,131]), with specific applications to the Po nuclei
(Refs. [124,132]) in which the coupling between U(5) and
SU(3) symmetries were explored and compared to the then-
existing data (mass A = 200 down to A = 192). Besides, a
different symmetry, i.e., F -spin symmetry [46], was proposed
to relate energy spectra in nuclei with different numbers of
protons, Nπ , and neutrons pairs, Nν , outside of the nearest
closed shells, however keeping the sum F = (Nπ + Nν)/2
constant. An application to the Pb region was carried out by
Barrett et al. [133]. The data obtained recently [134–140] from
detailed studies of the Hg nuclei on energy spectra and electric
quadrupole properties [B(E2) values, Q moments], however,
do indicate that the more simple idea of I spin is not holding
so well.

IV. THE INTERACTING BOSON MODEL WITH
CONFIGURATION MIXING FORMALISM

A. The formalism

The IBM-CM is an extension of the original IBM, making it
possible to treat simultaneously several boson configurations
that correspond to different particle-hole (p-h) shell-model
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J. E. GARCÍA-RAMOS AND K. HEYDE PHYSICAL REVIEW C 92, 034309 (2015)

excitations [48]. In our case, the model space includes the
regular proton 2p configurations and a number of valence
neutrons outside of the Z = 82, N = 126 closed shells (cor-
responding to the standard IBM treatment for the Po even-even
nuclei), as well as the proton 2h-4p configurations and the same
number of valence neutrons corresponding to a [N ] ⊕ [N + 2]
boson space (N being the number of active protons, counting
both proton holes and particles, plus the number of valence
neutrons outside the Z = 82, N = 126 closed shells, divided
by 2 as the boson number). Consequently, the Hamiltonian for
two-configuration mixing can be written as

Ĥ = P̂
†
NĤN

ecqfP̂N + P̂
†
N+2

(
ĤN+2

ecqf + �N+2
)
P̂N+2 + V̂ N,N+2

mix ,
(1)

where P̂N and P̂N+2 are projection operators onto the [N ]
and [N + 2] boson spaces, respectively, V̂ N,N+2

mix describes the
mixing between the [N ] and the [N + 2] boson subspaces, and

Ĥ i
ecqf = εi n̂d + κ ′

i L̂ · L̂ + κiQ̂(χi) · Q̂(χi), (2)

is a restricted IBM Hamiltonian called extended consistent-Q
(ECQF) Hamiltonian [141,142] with i = N,N + 2, n̂d the d
boson number operator,

L̂μ = [d† × d̃](1)
μ (3)

the angular momentum operator, and

Q̂μ(χi) = [s† × d̃ + d† × s](2)
μ + χi[d

† × d̃](2)
μ (4)

the quadrupole operator. This approach has been proven to be
a good approximation in several recent papers on Pt [57,58]
and Hg isotopes [64].

The parameter �N+2 can be associated with the energy
needed to excite two proton particles across the Z = 82 shell
gap, giving rise to 2p-2h excitations, corrected for the pairing
interaction gain and including monopole effects [49,143]. The
operator V̂ N,N+2

mix describes the mixing between the N and the
N + 2 configurations and is defined as

V̂ N,N+2
mix = w

N,N+2
0 (s† × s† + s × s)

+w
N,N+2
2 (d† × d† + d̃ × d̃)(0). (5)

The E2 transition operator for two-configuration mixing is
subsequently defined as

T̂ (E2)μ =
∑

i=N,N+2

eiP̂
†
i Q̂μ(χi)P̂i , (6)

where the ei (i = N,N + 2) are the effective boson charges
and Q̂μ(χi) the quadrupole operator defined in Eq. (4).

In Sec. IV B we present the methods used to determine the
parameters appearing in the IBM-CM Hamiltonian as well as
in the T̂ (E2) operator.

The wave function, within the IBM-CM, can be described
as

�(k,JM) =
∑

i

ak
i (J ; N )ψ

(
(sd)Ni ; JM

)

+
∑

j

bk
j (J ; N + 2)ψ

(
(sd)N+2

j ; JM
)
, (7)

where k, i, and j are rank numbers. The weight of the wave
function contained within the [N ]-boson subspace, can then

be defined as the sum of the squared amplitudes wk(J,N ) ≡∑
i |ak

i (J ; N )|2. Likewise, one obtains the content in the [N +
2]-boson subspace.

B. The fitting procedure: Energy spectra and absolute
B(E2) reduced transition probabilities

Here we present the way in which the parameters of the
Hamiltonian (1), (2), (4), and (5) and the effective charges in
the T̂ (E2) transition operator (6) have been determined. We
study the range 190Po to 208Po, thereby covering almost the
whole second half of the neutron shell N = 82–126.

In the fitting procedure carried out here, we try to obtain
the best possible agreement with the experimental data,
including both the excitation energies and the B(E2) reduced
transition probabilities. Using the expression of the IBM-CM
Hamiltonian, as given in Eq. (1), and of the E2 operator,
as given in Eq. (6), in the most general case 13 parameters
show up. We impose as a constraint to obtain parameters that
change smoothly in passing from isotope to isotope. Note also
that we constrained χN = 0 and κ ′

N+2 = 0. We have explored
in detail the validity of this assumption and we have found
very little improvement in the value of χ2 [see Eq. (8)] when
releasing those parameters. However, we have kept the value
that describes the energy needed to create an extra particle-hole
pair (two extra bosons) constant, i.e., �N+2 = 2400 keV and
have also applied the constraint of keeping the mixing strengths
constant too, i.e., w

N,N+2
0 = w

N,N+2
2 = 30 keV for all the

Po isotopes. We also have to determine for each isotope the
effective charges of the E2 operator. This finally leads to eight
parameters to be varied in each nucleus.

To determine the value of �N+2, we considered as a
reference the already known values for Pt and Hg, which are
2800 and 3480 keV, respectively. On one hand, we expect
to get a value closer to Pt than to Hg because the intruder
states for Po are supposed to be very close to the regular ones
and even become the ground state around the midshell. That
constrains our value to be not much higher than 2800 keV. On
the other hand, we know that the heavier isotopes, near the
closed shell, should have an energy gap between the regular
and the intruder states that is equal, at maximum, to �N+2 (see
Fig. 2 on correlation energy) and, moreover, experimentally
the intruder states should appear above 2000–3000 keV.

To determine the value of the mixing strengths, we
considered that the corresponding value for the Pt nuclei was
fixed to 50 keV [57], while for the Pb it was fixed to a smaller
strength of 18 keV [52,53], and for Hg it was fixed to 20 keV.
We performed a set of exploratory calculations between
20 and 30 keV and found that the best overall agreement
corresponds to w

N,N+2
0 = w

N,N+2
2 = 30 keV, although the

agreement is quite similar over the whole range.
The χ2 test is used in the fitting procedure to extract the

optimal solution. The χ2 function is defined in the standard
way as

χ2 = 1

Ndata − Npar

Ndata∑
i=1

[Xi(data) − Xi(IBM)]2

σ 2
i

, (8)
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FIG. 2. (Color online) Absolute energy of the lowest unperturbed
regular and intruder 0+

1 states for 190–208Po. The arrows correspond to
the correlation energies in the N and N + 2 subspaces (see also the
text for a more detailed discussion).

where Ndata is the number of experimental data, Npar is the
number of parameters used in the IBM fit, Xi(data) describes
the experimental excitation energy of a given excited state
[or an experimental B(E2) value], Xi(IBM) denotes the
corresponding calculated IBM-CM value, and σi is an error
(theoretical) assigned to each Xi(data) point. We minimize the
χ2 function for each isotope separately using the package
MINUIT [144], which makes it possible to minimize any
multivariable function.

In some of the lighter Po isotopes, owing to the small
number of experimental data, the values of some of the
free parameters could not be fixed unambiguously using the
above fitting procedure. Moreover, for the heavier isotopes
(A > 202), that part of the Hamiltonian corresponding to the
intruder states is fixed such as to guarantee that those states
appear well above the regular ones, that is, above 2 MeV.
In some cases, owing to the lack of experimental data, the
effective charges could not be determined.

As input values, we have used the excitation energies of
the levels presented in Table I. In this table we also give the

TABLE I. Energy levels, characterized by J π
i ,

included in the energy fit, if known, and the assigned
σ values in keV.

Error (keV) States

σ = 0.1 2+
1

σ = 1 4+
1 ,0+

2 ,2+
2

σ = 10 2+
3 ,3+

1 ,4+
2 ,6+

1 ,8+
1

σ = 100 6+
2

TABLE II. Hamiltonian and T̂ (E2) parameters resulting from
the present study. All quantities have the dimension of energy (given
in units of keV), except χN+2, which is dimensionless, and eN and
eN+2, which are given in units

√
W.u. The remaining parameters of

the Hamiltonian, i.e., χN and κ ′
N+2, are equal to zero, except for

�N+2 = 2400 keV and wN,N+2
0 = wN,N+2

2 = 30 keV.

Nucleus εN κN κ ′
N εN+2 κN+2 χN+2 eN eN+2

190Po 712.6 −29.41 6.34 285.43 −28.56 0.22 2.88a 1.86a

192Po 731.8 −24.20 0.43 402.67 −30.09 0.21 2.88a 1.86a

194Po 800.3 −15.12 −16.00 518.23 −28.92 0.41 2.88 1.86
196Po 845.0 −22.76 −10.96 373.16 −31.02 0.15 1.86 1.86
198Po 982.3 −28.00 −25.74 854.82 −34.51 1.33 2.05 1.10
200Po 955.8 −26.05 −25.00 843.48 −34.55 1.31 2.01 1.10b

202Po 942.1 −29.06 −28.46 236.30 −20.63 1.09 2.28 1.10b

204Po 810.4 0.00 −21.09 100.00 −5.00 0.50 2.28c 1.10b

206Po 717.1 0.00 −4.30 100.00 −5.00 0.50 2.28c 1.10b

208Po 643.4 0.00 6.52 100.00 −5.00 0.50 2.28c 1.10b

aThe effective charges have been taken to be the same as the
corresponding values obtained for 194Po.
beN+2 corresponding to 198Po.
ceN corresponding to 202Po.

corresponding σ values. We stress that the σ values do not
correspond to experimental error bars, but they are related
with the expected accuracy of the IBM-CM calculation to
reproduce a particular experimental data point. Thus, they act
as a guide so that a given calculated level converges towards
the corresponding experimental level. The σ (0.1 keV) value
for the 2+

1 state guarantees the exact reproduction of this
experimental most important excitation energy; i.e., the whole
energy spectrum is normalized to this experimental energy.
The states 4+

1 , 0+
2 , and 2+

2 are considered as the most important
ones to be reproduced (σ = 1 keV). The group of states 2+

3 , 3+
1 ,

4+
2 , 6+

1 , and 8+
1 (σ = 10 keV) and 6+

2 (σ = 100 keV) should
also be well reproduced by the calculation to guarantee a
correct moment of inertia for the yrast band and the structure of
the 0+

2 band. Note that we only considered states in the fit with
angular momentum and parity unambiguously determined.

In the case of the E2 transitions rates, we have used the
available experimental data involving the states presented in
Table I, restricted to those E2 transitions for which absolute
B(E2) values are known, except if serious hints that the
states involved present noncollective degrees of freedom exist.
Additionally, we have taken a value of σ that corresponds
to 10% of the B(E2) values or to the experimental error
bar if larger, except for the transition 2+

1 → 0+
1 , where a

smaller value of σ (0.1 W.u.) was taken, thereby normalizing,
in most of cases, our calculated values to the experimental
B(E2; 2+

1 → 0+
1 ) value.

This has resulted in the values of the parameters for the
IBM-CM Hamiltonian, as given in Table II. In the cases of
190–192Po and 200–208Po, the value of the effective charges,
or part of them, cannot be determined because not a single
absolute B(E2) value is known or χ2 is insensitive to their
values. However, for completeness we have taken the effective
charges of 194Po for 190–192Po, eN+2 of 198Po for 200–208Po, and
eN of 202Po for 204–208Po.
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C. Correlation energy in the configuration mixing approach

Intruder states are expected to appear, in principle, at an
excitation energy well above the corresponding regular ones
with identical angular momentum. The reason is that these
configurations are related to the creation of a 2p-2h excitation
across the Z = 82 closed shell. In the case of Po this energy
would correspond to �N+2 = 2400 keV. However, according
to Ref. [49], the single-particle energy cost has to be corrected
because of the strong pairing energy gain when forming two
extra 0+ coupled (particle and hole) pairs, by the quadrupole
energy gain when opening up the proton shell, as well as by the
monopole correction caused by a change in the single-particle
energy gap at Z = 82 as a function of the neutron number. In
particular, around the midshell point at N = 104, where the
number of active nucleons becomes maximal, the energy gain
owing to the strong correlation energy is such that the energy
of the intruder configurations becomes close to the energy of
the regular ones. It may even be that a crossing results, making
the intruder state form a ground state. For instance, in the case
of Pt isotopes, the nuclei around the midshell point at N = 104
exhibit a ground state of intruder nature [57,58].

The experimental states can present a strong mixing
because of the interaction between both families of config-
urations (regular and intruder). Therefore, it is not simple in
many cases to find out which configurations are dominant
in the ground-state wave function. To take advantage of the
IBM-CM calculations, we calculate explicitly the “absolute”
energy of the lowest 0+ state belonging to both the regular
[N ] and [N + 2] intruder configuration spaces, turning off the
interaction among the two families. We choose as the reference
energy the energy of the regular Hamiltonian describing the
[N ] space for the 210Po nucleus. This nucleus only consists of
a single boson, with the s-boson as the lowest energy state,
resulting in the zero-energy line (horizontal dashed red line
in Fig. 2). The energy of the lowest 0+ state in the regular
configuration space [N ], E(0+

1 ,N ), is lowered with respect
to the reference energy because of the correlation energy and
is described by the wave function �(0+

1 )reg
N [see also expres-

sion (9)]. The lowering depends on the number of bosons.
However, the energy of the lowest 0+ state in the intruder
configuration space [N + 2], E(0+

1 ,N + 2), is described by
the wave function �(0+

1 )int
N+2 [see also expression (10)] and

appears at the energy corresponding to �N+2. This energy
will subsequently be lowered by its specific correlation energy,
too. In most cases, the regular configuration with N bosons
corresponds to a spherical or slightly deformed shape, while
the intruder ones, with N + 2 bosons, correspond to a more
deformed shape. Therefore, the energy gain for the lowest
intruder state, described by the wave function �(0+

1 )int
N+2, use

to be larger than for the lowest regular state, described by the
wave function �(0+

1 )reg
N . The relative positions of these lowest

regular and intruder states are plotted in Fig. 2. Here it can
be clearly appreciated how the energies of both configurations
can become very close, depending on the balance between
the off-set, �N+2, and the difference in the correlation energy
E(N + 2)corr − E(N )corr.

One notices how the energies become really close near
midshell (N = 106, A = 190), where the number of active
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FIG. 3. (Color online) Experimental excitation energies (up to
Ex ≈ 3.0 MeV) (a) and the theoretical results (b), obtained from
the IBM-CM.

nucleons is maximal, showing that the lowest intruder state
can determine the character of the lowest 0+

1 state. From
A = 196, and moving towards the heavier masses, the energy
difference starts to increase and both states appear to be
very well separated. Note that once the isotopes approach
the end of the shell, at N = 126, the number of active
bosons is drastically reduced and, therefore, the correlation
energy is reduced dramatically. In particular, the energy of
the regular state reaches the reference energy, which means
that it corresponds to essentially a spherical shape, while the
energy of the intruder state approaches the energy �N+2 quite
closely. Consequently, at the end (or at the beginning) of the
shell, the maximum energy difference between both states will
correspond to �N+2. The existence of a ceiling for the energy
difference modulates the parabolic behavior of the energy
systematics of the intruder states, transforming it into a flat
shape and, therefore, leading to an energy for the intruder
states lower than experimentally observed. Clearly, this is a
deficiency of the IBM-CM calculations near the shell closure.

D. Detailed comparison between the experimental data
and the IBM-CM results: Energy spectra and electric

quadrupole properties

In this section, we compare in detail the experimental
energy spectra with the theoretical ones up to an excitation
energy below Ex ≈ 3.0 MeV. In Fig. 3(a) we plot the
experimental data set, while in Fig. 3(b) the theoretical values
are depicted. Note that the energy corresponding to the 2+

1
state perfectly agrees with the theoretical one because this
level was used to normalize the energies; in other words, we
used in the fitting procedure for this level a very small value
for σ (0.1 keV) to exactly reproduce the 2+

1 experimental
energy. Comparing the energy spectra, one can distinguish
two regions, A < 200 and A � 200, with an overall better
agreement in the first region as compared to the second. A
most probable reason for this is the fact that in the lightest
isotopes the number of active bosons is substantially larger
and the collectivity is enhanced. As we discuss later, in the
heavier Po isotopes, noncollective broken-pair states (with a
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FIG. 4. (Color online) Comparison of the absolute B(E2) re-
duced transition probabilities along the yrast band, given in W.u.
Panel (a) corresponds to known experimental data and panel (b) to
the theoretical IBM-CM results.

v = 2 seniority character) do appear in the low-energy part
of the energy spectrum. Those states are not well reproduced
within the IBM space because of the restriction to a set of
interacting s and d bosons.

One observes in Fig. 3 how the compression of the energy
spectrum, with decreasing mass number, is well reproduced.
The same happens for the systematic dropping of the energy of
the 0+

2 states, and the energy of the yrast band, more generally.
Note that the agreement is better for those states with low and
even angular momenta.

Next, we carry out a comparison for the B(E2) values,
which is a much more stringent test than the excitation
energy, because these numbers are highly dependent on the
detailed structure of the wave function. Although the existing
experimental information on B(E2) values is rather scarce,
recent new results from Coulomb excitation experiments at
REX-ISOLDE, in particular for the 196–198Po isotopes, have
appeared [115], improving the experimental knowledge of this
mass region.

In Figs. 4 and 5 we compare the B(E2) reduced transi-
tion probabilities, while in Fig. 6 we compare the electric
quadrupole moments. We also present a more detailed com-
parison on B(E2) values in Table III.

In Fig. 4 we present the intraband B(E2) values along
the yrast band, for which the most complete experimental
information exists. In a similar way as for the excitation
energies, we used the B(E2; 2+

1 → 0+
1 ) reduced transition

probability to normalize the theoretical results. Note that for
some nuclei, where experimental information is scarce, we
have used the corresponding values of the neighboring isotopes
to determine the effective charges (as explained in Sec. IV B).
On the experimental side, the value of B(E2; 2+

1 → 0+
1 ) is
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FIG. 5. (Color online) Comparison of the few nonyrast intraband
absolute B(E2) reduced transition probabilities, given in W.u. Panel
(a) corresponds to the few known experimental data, panel (b) to the
theoretical IBM-CM results.

systematically dropping, which denotes a reduction of the
collectivity of the states when approaching the end of the
neutron shell. However, this is not the case for B(E2; 4+

1 →
2+

1 ) in 198Po, where an unexpected large value is observed.
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FIG. 6. (Color online) IBM-CM values of the quadrupole mo-
ments for the 2+

1 and 2+
2 states in 190–208Po. The quadrupole moments

are given in units e b. The dash-dotted and dotted lines indicate the
quadrupole moments when the mixing Hamiltonian is switched off,
corresponding to the unperturbed 2+

1 , 2+
2 , and 2+

3 states.
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TABLE III. Comparison of the experimental absolute B(E2)
values (given in units of W.u.) with the IBM-CM Hamiltonian results.
Data are taken from the Nuclear Data Sheets [73–78], complemented
with references presented in Sec. II.

Isotope Transition Experiment IBM-CM

194Po 2+
1 → 0+

1 90(20) 90

4+
1 → 2+

1 120(40) 156
196Po 2+

1 → 0+
1 47(6) 47

4+
1 → 2+

1 103(15) 92

6+
1 → 4+

1 130(60) 125

2+
2 → 0+

1 5.7(10)a 2.1

2+
2 → 2+

1 130(25)a 36
198Po 2+

1 → 0+
1 39(9) 39

4+
1 → 2+

1 177(53) 61

8+
1 → 6+

1 2.0(1)b,c 72

0+
2 → 2+

1 285(+980
−285)a 7

2+
2 → 0+

1 1.8(+1.6
−0.6)a 1.7

2+
2 → 2+

1 229(147)a 13

2+
2 → 0+

2 42(56)a 33
200Po 2+

1 → 0+
1 31(2) 31

8+
1 → 6+

1 9.4(5)b 52
202Po 2+

1 → 0+
1 32(8) 32

aData taken from Ref. [115].
bExperimental data not included in the fit.
cData taken from Ref. [91].

However, the theoretical results show a continuous drop of all
the intraband transitions, resulting from the reduction of the
collectivity of the states (in line with a decreasing number of
active bosons).

In Fig. 5 we study the systematics of some interband
transitions involving the states 0+

1,2 and 2+
1,2. Because of the

lack of experimental data and the large error bars, it is difficult
to extract any trend. Regarding the theoretical results, once
more, one notices an overall reduction of the B(E2) values.
We point out that for A > 196, the observed B(E2) values
are of the same order as the observed B(E2) values in the
yrast band. This represents a hint about the changing mixing
character of the states as a function of mass number A (see
Fig. 12 as an illustration of the changing structure of the wave
function).

A different way to extract information on the changing
character of the wave functions for the lowest two 2+ states is
comparing the spectroscopic quadrupole moments, shown in
Fig. 6. Here, we compare the theoretical and the experimental
values of the quadrupole moment for the states 2+

1 and
2+

2 . Moreover, we present the values corresponding to the
unperturbed lowest-lying three 2+ states. One notices that the
2+

1 state corresponds to a well deformed and oblate shape for
the lightest isotopes, which is smoothly changing into a rather
spherical shape for A = 202 and onwards. However, the 2+

2
state corresponds to a prolate shape for the lightest isotopes,
changing into an oblate shape for A = 196–200 and into a
spherical shape for A = 202 and the still heavier isotopes.
When comparing with the unperturbed values, one can see how
the 2+

1 state is built up as a mixture of the first two unperturbed
2+ states. However, to understand the second 2+

2 state, we
have to resort to a mixture of the second and third unperturbed
2+ states mainly. This figure presents a clear proof of the
changing character for the first two 2+ states as a function of
mass number. This issue is discussed in Sec. IV E in a more
quantitative way.

In Figs. 7 and 8 we present the experimental and the-
oretical energy spectra (up to Ex ≈ 2.5 MeV) for masses
A = 190–198, which is the region where the coexistence
should be more evident. We include in the comparison the
known absolute B(E2) values. One observes a rather distinct

FIG. 7. Experimental excitation energies and absolute B(E2) transition rates for selected states in 190–198Po.
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FIG. 8. Theoretical excitation energies and absolute B(E2) transition rates for selected states in 190–198Po.

rotational structure (along the yrast band) for A = 190–194,
followed by a structure that is changing into a more vibrational
behavior for masses A = 196–198.

The Po energy spectra show some other most interesting
structural changes starting at the neutron N = 126 shell
closure, moving towards the neutron-deficient region (decreas-
ing towards midshell at A = 188) (see Figs. 1 and 3). One starts
with the typical π (1h9/2)2 two-particle spectrum governed by
the seniority characteristics of the two-body proton-proton
interaction. An energy gap of ∼0.8 MeV is observed from
the 8+

1 to the 8+
2 state energy difference (see Fig. 1), which

most probably results from a π (1h9/22f7/2) configuration, as a
measure of the single-particle energy gap. Next, one observes
the remaining characteristics of a seniority v = 2 spectrum,
albeit with an immediate drop of the 2+

1 state, when removing
two neutrons from the closed N = 126 shell, which then
keeps a remarkably constant energy down to mass A = 200
(N = 116). The energy of the 4+

1 slightly drops but also
remains at an approximate constant energy. The higher spin
members 6+

1 , 8+
1 are shifted upwards in a rather regular way

down to mass A = 198 (N = 114), before first the 6+
1 starts

dropping systematically down in excitation energy at A = 196
(N = 112), followed by the 8+

1 dropping too from A = 194
(N = 110) (see Figs. 1 and 3). Therefore, it looks like the
region 208 � A � 198 is reminiscent of a vibrational pattern
where the specific two-nucleon properties of the high-spin
proton pair remain rather well intact down to the lower
value at A = 198. An interesting test to gain deeper insight
into this region, and the connection to the yet lower-mass
region 196 � A � 190 where a dominant rotational-like and
more collective pattern is showing up, can be derived from
a study of, e.g., the B(E2; 8+

1 → 6+
1 ) value, as well as, of

the g-factor and the quadrupole moment of the high-spin
8+

1 state (see Table III and Fig. 9). Experiments [145,146]
have shown that the g factor stays remarkably constant, going
down to A = 198, at a value consistent with the π (1h9/2)28+
configuration (for a pure v = 2 configuration, as a function

of n, the number of holes in the π (1h9/2) orbital, the g factor
remains constant), indicating a minor influence of collective
admixtures into this state. Maj et al. [91] have analyzed the
B(E2; 8+

1 → 6+
1 ) value as well as the 8+

1 quadrupole moment
to extract an effective charge (see, e.g., Fig. 9 in Ref. [91]).
The influence of particle-core coupling on the quadrupole
moment of the 8+

1 state has been studied for the Po nuclei with
A = 202 and 204, indicating an increase in the quadrupole
moment as low as A = 200 [147]. The effective charge
shows a steady increase of ∼2 from A = 210 down to mass
A = 200, from which a sharp drop is observed moving towards
A = 198. This seems to support the idea that, in particular
for the high-spin members with a seniority v = 2 character,
those states only couple weakly with collective quadrupole
excitations. Moreover, these results also corroborate the fact
that from A = 196 and onwards with decreasing A value,
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FIG. 9. (Color online) (a) Experimental and theoretical
quadrupole moment for the 8+

1 state (note that the theoretical
values for A = 206 and 208 are not shown owing to the reduced
number of valence bosons). (b) Gyromagnetic factor for the 8+

1 state
(experimental data and theoretical results).
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large collective components should appear in the 6+
1 state,

even though the g factor of the 8+
1 remains constant between

A = 200 and A = 198 [145,146]. In view of the discrepancies
between the IBM-CM calculations and the experimental data
concerning the g factor and the B(E2; 8+

1 → 6+
1 ) value, those

states should have a very weak coupling with the quadrupole
collective excitations and genuinely correspond to almost pure
v = 2 seniority configurations (see Fig. 9).

Finally, it is worth noting a recent beyond-mean-field
(BMF) calculation performed for the lead region by Yao
et al. [127] and, in particular, with results for the even-even Po
isotopes (A = 186–204). They have calculated energy spectra
(general systematics), as well as charge radii, ρ2(0+

2 → 0+
1 ),

quadrupole moments for the lowest 2+ and 4+ states, and
B(E2; 2+

k → 0+
l ) (with k,l = 1,2). Comparisons with existing

data have also been carried out for 190Po and 194Po in Ref. [113]
and for 196Po in Ref. [114]). Because their formulation is
within a mean-field context, invoking the concept of nuclear
shapes (spherical, oblate, prolate), it is not always possible
to compare with the present IBM-CM approach in which
the model space is restricted to 0p-0h and 2p-2h excitations
across the Z = 82 closed shell. A few general remarks are in
place. Regarding the energy spectra the main conclusion of the
calculations are the overestimation of the 0+

2 energy (which
is predicted to be oblate), though the slope of the variation
with respect to A is well reproduced and, moreover, that the
calculation is not able to reproduce the almost constant value
of the 2+

1 excitation energy, giving rise to a steady increase
of the energy as a function of A. Another very interesting
outcome of the calculation is the spectroscopic quadrupole
moment (note that in Ref. [127] an equivalent magnitude is
provided, βs) for the 2+

1 and 2+
2 states. The calculation predicts

a prolate shape for the 2+
1 state while oblate for the 2+

2 state
up to N = 106 (A = 190), interchanging at this point their
character, becoming almost spherical (but slightly oblate) for
N = 114 (A = 198) and onwards. In the case of A = 190, the
calculation exhibits the presence of a prolate and an oblate
band structure, very much like the IBM-CM model results.
The results for the charge radii give an overall correct trend.
However, the upsloping trend in 〈r2〉 (relative to the value for
210Po), starting at N = 112 (A = 196), is not well described
within the BMF description as compared with the IBM-CM.

E. Wave-function structure: From the unperturbed
structure to configuration mixing

We start our analysis with the structure of the configuration-
mixed wave functions along the yrast levels, expressed as
a function of the [N ] and [N + 2] basis states, as given in
Eq. (7). In Figs. 10(a) and 10(b), we present the weight of
the wave functions contained within the [N ]-boson subspace,
defined as the sum of the squared amplitudes wk(J,N ) ≡∑

i |ak
i (J ; N )|2, for both the yrast states, k = 1, and the k = 2

states (the latter are indicated with a dashed line) for spins
Jπ = 0+, 2+, 3+, 4+ in panel (a) and J = 5+, 6+, 7+, 8+ in
panel (b). The results exhibit an interesting behavior: The yrast
states show rather an intruder character for mass A = 190 that
quickly is changing into a regular one in the mass interval
A = 194–200. For the 0+ states, they are fully mixed for
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FIG. 10. (Color online) Regular content of the two lowest-lying
states for each J value (solid lines with solid symbols correspond
with the first state, while dashed lines with open symbols correspond
with the second state) resulting from the IBM-CM calculation, as
presented in Fig. 3.

A = 190 and, subsequently, the 0+
1 state is changing into a pure

regular one, while the character of the 0+
2 state is essentially

purely intruder for A = 200, later on changing into a pure
regular character for A = 204. The behavior for the 2+ and
4+ states is very similar. The first (2+ or 4+) state starts
as a dominant intruder state for the lighter isotopes, steadily
changing with an increase of its regular component, becoming
a fully regular configuration for A = 200 and onwards to the
heavier masses. The second 2+ and 4+ states start with a
regular component of ≈50% and ≈30%, respectively, reaching
a maximal value for A = 194 (≈70%), then decreasing when
moving to A = 200, increasing up to reach a purely regular
character by mass A = 202. Indeed, the 0+

2 , 2+
2 , and 4+

2
states exhibit a similar trend. The other states exhibit a more
erratic behavior, mainly because of the many crossings in the
unperturbed energy spectra of the regular and intruder states,
although appearing at very similar energies. Finally, note that
the results for A = 208 should all correspond to pure regular
states because the intruder states appear at a much higher
energy at N = 126. Because of the constraint put on the value
of �N+2 (see the discussion in Sec. IV C), the intruder states
appear too low in the energy spectra. Moreover, because of
the reduced number of bosons in 208Po (Z = 84, N = 124),
two, only regular states up to spin J = 4 can be constructed
within the IBM. Consequently, it is not possible to describe the
higher-spin (J = 8 and beyond) states showing up in the mass
region 204 � A � 208 in a reasonable way within the IBM, in
view of the specific high-spin broken-pair states appearing at
≈1.5–2 MeV.

Regarding the energy systematics of the intruder states,
one expects a parabolic shape centered around N = 104, as
is the case of Hg and Pb. However, this is not the case
for Po or for Pt isotopes. The reason for not observing the
parabolic shape is the rather strong interaction between regular
and intruder configurations and the crossing of the intruder
and regular states in the ground state. Therefore, it is very
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FIG. 11. (Color online) Energy spectra for the IBM-CM Hamil-
tonian presented in Table II, switching off the mixing term. The two
lowest-lying regular states and the lowest-lying intruder state for each
of the angular momenta are shown (solid lines with solid symbols for
the regular states while dashed lines with open symbols are used for
the intruder ones).

enlightening to calculate the energy spectra as a function of A
switching off the mixing part of the Hamiltonian, i.e., keeping
w

N,N+2
0 = w

N,N+2
2 = 0. These spectra are depicted in Fig. 11,

where we show the lowest two regular and the lowest two
intruder states for different angular momenta. One observes
a rather flat behavior of the energy for the regular states,
still indicating a downsloping tendency when moving towards
the lighter Po isotopes. The energy of the intruder states is
smoothly decreasing down to neutron midshell (N = 106).
In this region, the parabola becomes very flat (A = 190–194).
This results mainly from the smooth change of the Hamiltonian
parameters when passing from isotope to isotope. A striking
fact is the almost degeneracy of the unperturbed regular
and intruder 0+ states for A = 190–194, with the intruder
configuration becoming the lowest one in the energy spectrum
for A = 190–192. The crossing of a regular and a intruder
configuration with the same angular momentum has a strong
influence on the regular component of the states resulting
from the full IBM-CM calculation (see Fig. 10) inducing
an interchange of character between the two states. In the
situation of the Jπ = 2+ unperturbed energy spectrum, the
closest approach happens at A = 196 and in Fig. 10 one notices
that the 2+

1,2 states interchange their character at this point. The
same happens for the 4+ states at A = 196–198.

A most interesting decomposition of the wave function is
obtained by first calculating the wave functions within the N
subspace as

�(l,JM)reg
N =

∑
i

cl
i(J ; N )ψ

(
(sd)Ni ; JM

)
(9)

FIG. 12. (Color online) Overlap of the wave functions of Eq. (7),
with the wave functions describing the unperturbed basis Eqs. (9)
and (10). (a) Overlaps for first 0+, 2+, 3+, 4+; 5+, 6+, 7+, 8+ state;
(b) overlaps for the corresponding second state (see also text).

and likewise for the intruder (or N + 2 subspace) as

�(m,JM)int
N+2 =

∑
j

cm
j (J ; N + 2)ψ

(
(sd)N+2

j ; JM
)
, (10)

defining an “intermediate” basis [53,54]. This generates a set
of bands within the 0p-0h and 2p-2h subspaces, corresponding
to the unperturbed bands that are extracted in schematic two-
level phenomenological model calculations (as discussed in
references [100,137–139,148–152]), and indeed correspond
to the unperturbed energy levels depicted in Fig. 11.

The overlaps N 〈l,JM | k,JM〉 and N+2〈m,JM | k,JM〉
can then be expressed as

N 〈l,JM | k,JM〉 =
∑

i

ak
i (J ; N )cl

i(J ; N ) (11)

and

N+2〈m,JM | k,JM〉 =
∑

j

bk
j (J ; N + 2)cm

j (J ; N + 2) (12)

[see expressions (9) and (10)]. In Fig. 12 we show these
overlaps, but squared, where we restrict ourselves to the first
and second state (k = 1,2) with angular momentum Jπ = 0+,
2+, 3+, 4+, 5+, 6+, 7+, 8+, and give the overlaps with the
lowest three bands within the regular (N ) and intruder (N + 2)
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J. E. GARCÍA-RAMOS AND K. HEYDE PHYSICAL REVIEW C 92, 034309 (2015)

spaces (l = 1,2,3 and m = 1,2,3). Because these figures are
given as a function of mass number, one obtains a graphical
insight into the changing wave-function content. In panel
(a), which corresponds to the first state, one observes for
the 0+ state a strong mixing between the first regular and
first intruder unmixed states (also called the “intermediate
basis”) for A = 190–194, while for the heaviest isotopes
the state is mainly of regular character. For the 2+ states
the situation is very much the same, though the mixing is
much more reduced. For the higher spin states one observes a
sharp border at A = 198, in such a way that for A � 196 the
states correspond to the first intruder configuration, while for
A � 198 they correspond to the first regular configuration.
Note that the intruder character observed for the heavier
isotopes is somehow artificial because of the reduced number
of bosons and also to the reduced excitation energy of the
intruder configurations. In panel (b) the situation becomes
rather fuzzy especially for J > 2. For the 0+ state one observes
a mixture between the first regular and intruder configurations
up to A = 196; then the composition changes into a pure first
intruder configuration and finally ends up as the second regular
configuration. Concerning the 2+ state, the lighter isotopes
correspond to a mixture of the second intruder and the first
and second regular configuration, the composition changing
into the first intruder for A = 198–200, finally ending as the
second regular configuration. For the higher-spin states, the
pattern is not so clear. In general, the states become rather
pure and the changes in their composition are mainly at-
tributable to the many crossings between the unperturbed
regular and intruder configurations.

V. STUDY OF OTHER OBSERVABLES:
α-DECAY-HINDRANCE FACTORS AND ISOTOPIC SHIFTS

A. α-decay-hindrance factors

The α-decay process can be used as an important tool
to probe nuclear structure; in particular, the overlap factor
between the initial and final wave functions has the character
of an α-particle spectroscopic factor. Because calculations of
the absolute decay rate are very difficult, most often one studies
decay branches, characterized by a hindrance factor described
by the expression

HF = δ2
gs

δ2
ex

= IgsPex

IexPgs
, (13)

where δ2
i is the reduced α width, Pαi

the penetration probability
through the combined Coulomb and centrifugal barrier [106]
and Ii the α-decay intensity (with i = gs,ex for the ground
state and excited state, respectively) [106].

The Pb region has been studied intensively and hindrance
factors have been used to obtain valuable information on
shape coexistence and mixing of various nuclear shapes. In
particular, a two-level mixing model, suggested by Wauters
et al. [97], has been used to analyze the experimental hindrance
factors and extract complementary information on mixing
between different nuclear configurations.

The structure information on the composition of the 0+
1

ground state in the 190–198Po nuclei is derived from the

Pb  0 2
+

[N+2]
x x

Pb  0 1
+

[Ν]
Po  0 2

+

[N+2]
x x

Po  0 1
+

[Ν]

Rn  0 1
+

[Ν]

FIG. 13. Schematic view of α decay from the Rn nuclei into the
Po nuclei and from the Po nuclei into the Pb nuclei.

specific α-decay-hindrance factors into both the 0+
1 and the

0+
2 states into the corresponding daughter 186–194Pb nuclei (see

Fig. 13). Use is made of the fact that for the Pb nuclei, it was
shown, through study of the Pb nuclear charge radii [6] and
very weak E0 decay strength from the 0+

2 → 0+
1 transition,

that the Pb nuclei retain a spherical ground-state structure.
The experimental results on these Po nuclei [95–97,99–
101,106,107] have been analyzed in these papers, resulting in
hindrance factors of 2.8 ± 0.5, 2.5 ± 0.1, 1.1 ± 0.1, and 0.4
for A = 198, 196, 194, and 192, respectively. The major result
is the decreasing trend in these hindrance factors, even favoring
decay to the excited 0+

2 excited state at 591 keV in 188Pb
starting from 192Po. In those studies, and using a two-state
mixing model [97], an intruder character for the ground state
0+

1 state in 192Po turns out to be ≈63% [100], or, even larger,
>65% [101]. More recently, α decay from 188,192Po has been
observed into the final 0+ excited states in 184,188Pb [104].
Their analyses results in hindrance factors into the first excited
0+

2 state of 0.08 ± 0.03 and 0.57 ± 0.12, respectively, which
may well turn out to be an indication of a very large overlap
of the wave functions in the initial and excited states in the
final nucleus. In that latter paper, an analysis was carried
out from inspecting the various energy minima in both the
Po and the Pb nuclei, obtaining qualitative information on
overlaps of the corresponding wave functions, derived from the
Nilsson-Strutinsky approach [153]. An analysis of hindrance
factors was also carried out using a similar method, making use
of deformed mean-field wave functions at the energy minima
of the total energy surfaces, pointing out that this approach,
albeit different from an approach explicitly including mp-nh
excitations across the closed Z = 82 shell closure, renders
quite similar results [154].

The wave functions, obtained from the IBM-CM (see also
similar results on the study of the Pt [58] and Hg [64] nuclei
on α-decay-hindrance factors), give rise to the following
theoretical values of 6%, 17%, 42%, and 53%, corresponding
with the weight factors of the intruder component (see Fig. 10)
for the masses A = 198, 196, 194, and 192, respectively.
These numbers can be compared with the experimental relative
hindrance factors as discussed before, with a rather good
agreement.

On the other side, α-decay starting from the even-even ARn
nuclei (see Fig. 13), into the A−4Po nuclei, gives very strong
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fingerprints for observing excited 0+ states, in particular,
experiments studying the decay of 202Rn into 198Po [94] and
of 198,200Rn [92] into the 194,196Po nuclei. The analysis of these
data, using a two-state mixing model [148], resulted in detailed
information on the more deformed intruder configuration in the
2+

1 state. Its weight factor is changing from 7%, passing by 31%
and 72%, towards the value of 88%, for A = 200, 198, 196,
and 194, respectively. It is interesting to compare these results
with the present IBM-CM calculations, resulting in a variation
of the intruder weight factor of 5%, 15%, 47%, and 78% (see
Fig. 10) for the same mass values. This again indicates a rather
good description of the changing wave function structure for
the 2+

1 state in the Po even-even nuclei.
Studies on α decay from the odd-mass Po nuclei have

been carried out for the same mass region, with now
an extra neutron coupled to the underlying Po even-even
core [98,102,103,105]. These experiments show the presence
of rather weakly particle-core coupled states, associated with
a spherical configuration for the even-even underlying core,
as well the appearance of a more strongly coupled structure,
associated with coupling of the odd particle with the more
deformed configuration of the even-even core.

A lot of effort has been invested into going beyond the more
simplified two-state mixing model that has been extensively
studied analyzing the α-decay-hindrance factors related to the
decay into the excited 0+

i states in the daughter nuclei. In
particular, more detailed calculations have been carried out
by Delion et al. [155,156], and more recently in Ref. [108],
emphasizing the need for a microscopic quasirandom-phase
approximation description that encompasses both neutron and
proton pairing vibrations as well as including proton 2p-2h
excitations across the Z = 82 closed shell. More in particular,
calculations have mainly concentrated to better understand
the observed hindrance factors for α decay, leading into
the neutron-deficient Po, Pb, Hg, and Pt nuclei. Karlgren
et al. [154] use the information on the energy minima in the
β-γ plane of the total energy surface as the essential input to
calculate the hindrance factors. They also discuss a possible
connection between the present deformed mean-field approach
with a picture in which specific particle-hole excitations
are invoked within a shell-model approach. Moreover, Xu
et al. [157] formulates the α-decay-hindrance factors within a
density-dependent cluster model to describe the tunneling of
a preformed cluster through the deformed Coulomb barrier.

B. Isotopic shifts

Experimental information about ground-state charge radii
is also available for both the even-even [118] and the odd-
mass [116,117] Po nuclei. Combined with similar data for the
adjacent Po, Pb, and Pt nuclei, as well as for the odd-mass
Bi, Tl, and Au nuclei, the systematic variation of the charge
radii supplies invaluable information on the ground-state wave
function [158–160]. We illustrate the overall behavior of 〈r2〉A
relative to the radius at mass A = 210 in Fig. 14(a) and
the relative changes defined as �〈r2〉A ≡ 〈r2〉A+2 − 〈r2〉A in
Fig. 14(b). The experimental data are taken from Cocolios
et al. [118].

FIG. 14. (Color online) (a) Charge mean-square radii for the Po
nuclei. (b) Isotopic shift for the Po nuclei. The data are taken from
Ref. [118].

To calculate the isotope shifts, we have used the standard
IBM-CM expression for the nuclear radius,

r2 = r2
c + P̂

†
N (γNN̂ + βNn̂d )P̂N

+ P̂
†
N+2(γN+2N̂ + βN+2n̂d )P̂N+2. (14)

The four parameters appearing in this expression are fitted
to the experimental data, corresponding to the radii of A =
192–198 even-even Po isotopes [118]. The resulting values are
γN = −0.108 fm2, βN = 0.152 fm2, γN+2 = −0.022 fm2, and
βN+2 = 0.027 fm2. Note that in determining these parameters
we took as reference point 204Po instead of 210Po, which is the
reference for the experimental data.

Panel (a) of Fig. 14 shows the value of the radius relative
to A = 210. The first important fact is the strong deviation
from the linear trend (marked with the dotted line) at A = 198
and downwards, which is showing the onset of deformation
confirmed in several recent experimental papers [116,118]. To
see this fact more clearly, we also present the value of the iso-
topic shift which enhances the appearance of the deformation.
We mention the very good quantitative agreement between
the IBM-CM and the experimental data, which confirms that
the interplay between the [N ] and the [N + 2] contributions
in the 0+ ground-state wave function along the whole chain
of Po isotopes is well described by the model. Comparing
with the data for the nearby Hg and Pt isotopes, one notices
that the range of variation of the isotopic shift for Hg is only
≈0.02 fm2, while for Pt this amounts to ≈0.1 fm2 and, finally,
for Po becomes ≈0.2 fm2. This fact is telling us how abrupt the
onset of deformation in the Po is. Note the strong similarity of
Fig. 14(b) with the Pt case [58], where there is also an abrupt
drop of the isotopic shift at A = 184–186.

VI. QUADRUPOLE INVARIANTS AND NUCLEAR
DEFORMATION

The IBM can provide us with both the energy spectra and
the corresponding wave functions, as well as all derived ob-
servables [B(E2)’s, quadrupole moments, radii, . . .], working
within the laboratory frame, as well as the corresponding
mean-field energy surface, defining a nuclear shape over the
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FIG. 15. (Color online) Matrix coherent-state calculation for
190–194Po, corresponding with the present IBM-CM Hamiltonian
(Table II). The energy spacing between adjacent contour lines equals
100 keV and the deepest energy minimum is set to zero, corresponding
to the red color.

β-γ intrinsic frame. This geometric interpretation of the IBM
can be constructed using the intrinsic state formalism, as
proposed in Refs. [161–165]. The extension of this formalism
to describe simultaneously regular and intruder configurations
was proposed by Frank et al., introducing a matrix coherent-
state method [166–169]. In Refs. [59,64] a detailed description
of the method and its application to Pt and Hg isotopes,
respectively, can be found. In Figs. 15(a)–15(c) the IBM-CM
mean-field energy surfaces are depicted for 190Po, 192Po, and
194Po, respectively. In 190Po the energy surface presents an
oblate minimum, which evolves into a very flat surface for
192Po and in a spherical shape for 194Po. Note that from Fig. 3
in Ref. [127], the 192Po and 194Po nuclei exhibit an oblate
minimum; however, in reaching 190Po, the energy minimum
switches over to become a prolate minimum, with a very
similar deformation.

Even though the shape of the nucleus is not an experimental
observable, it is still possible to extract from the data direct
information about various moments characterizing the nuclear
shape corresponding with a given eigenstate. Using Coulomb
excitation, it is possible to extract the most important diagonal
and nondiagonal quadrupole and octupole matrix elements,
including their relative signs and, in a model-independent way,
extract information about nuclear deformation, as shown by
Kumar, Cline, and co-workers [170–174].

The essential point is the introduction of an “equivalent
ellipsoid” view of a given nucleus [170] corresponding to
a uniformly charged ellipsoid with the same charge, 〈r2〉,
and E2 moments as the nucleus characterized by a specific
eigenstate [170,175].

From the theoretical point of view, the nuclear shape can
be calculated using the quadrupole shape invariants. The
quadrupole deformation corresponds to

q2,i =
√

5〈0+
i |[Q̂ × Q̂](0)|0+

i 〉. (15)

For the triaxial rigid rotor model [176] it is directly connected
with the deformation parameter

q2 = q2 (16)

where q denotes the nuclear intrinsic quadrupole moment.
To calculate analytically the quadrupole shape invariants

characterizing the nucleus in its ground-state and low-lying
excited states, it is necessary to resort to a closure relation,

TABLE IV. Quadrupole shape invariants for the 190–208Po isotopes.

Isotope State q2 (e2 b2) Isotope State q2 (e2 b2)

190 0+
1 6.2a 200 0+

1 1.1a

0+
2 5.7a 0+

2 0.9a

192 0+
1 4.8a 202 0+

1 1.1a

0+
2 4.5a 0+

2 0.9a

194 0+
1 3.6 204 0+

1 0.7a

0+
2 3.5 0+

2 0.7a

196 0+
1 1.7 206 0+

1 0.6 a

0+
2 2.8 0+

2 0.4a

198 0+
1 1.4 208 0+

1 0.4a

0+
2 1.2 0+

2 0.1a

aThe effective charges have been taken from neighboring isotopes
(see Table II).

1 = ∑
J,i,M |JiM〉〈JiM|, leading to the expression

q2,i =
∑

r

〈0+
i ||Q̂||2+

r 〉〈2+
r ||Q̂||0+

i 〉. (17)

In Table IV, we present the theoretical value of q2

corresponding to the 0+
1 and 0+

2 states for the whole chain
of Po isotopes. In this case, only very few experimental
values of the reduced E2 matrix elements 〈0+

i ||Q̂||2+
r 〉 have

been measured [115] besides the strongest and dominating
〈0+

1 ||Q̂||2+
1 〉 matrix element. Because of the limited number

of reduced E2 matrix elements, going into r = 2, 3, . . . final
states, it is not possible to extract reliable experimental values.
The reason that it is not possible to extract the triaxial shape
variable δ is the same reason for not including this variable in
the discussion. The main conclusion of this table is that the
deformation of both 0+

1,2 states is very similar and is dropping
when moving from midshell, at N = 104, to the end of the
shell, at N = 126 [115].

Starting from the quadrupole invariant (15), one can extract
a value of the deformation β (see, e.g., Refs. [173,177,178])

β = 4π
√

q2

3Zer2
0 A2/3

, (18)

where e is the proton charge and r0 = 1.2 fm. Thus, we can
extract values for β corresponding to the ground-state 0+

1 and
the first excited 0+

2 state.
The resulting β values, extracted from Eq. (18), are shown

in Fig. 16(a), and one notices an overall decrease, albeit with a
plateau in the mass region 194 � A � 202, which is the region
corresponding with an overall change in the energy scale for
the first excited 2+

1 state.
We also provide a different measure of the deformation

value and extract a value of β starting from a given B(E2)
value through the expression

β = 4 π
√

B(E2; J → J − 2)

3 Z e r2
0 A2/3 〈J 0 2 0 |J − 2 0 〉 , (19)

where 〈j1m1j2m2|jm〉 is a Clebsch-Gordan coefficient.
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FIG. 16. (Color online) Comparison of the value of β extracted
from the theoretical quadrupole shape invariants (a) and the ones
extracted from experimental and theoretical B(E2) values (b),
corresponding to the 0+

1 and 0+
2 states.

In particular, we extract the value of β, derived from the
B(E2; 2+

1 → 0+
1 ) value, but also for any other B(E2; J+ →

(J − 2)+) value along the yrast band. The extracted β values
then give interesting information about a possible variation
along the band. Note that we extract the value for 0+

1 from
B(E2; 2+

1 → 0+
1 ) and for 0+

2 from B(E2; 6+
1 → 4+

1 ). The
corresponding values are plotted in Fig. 16(b) and are fully
consistent with the results, as shown in Fig. 16(a). They are
slightly smaller because of using only a single but dominant
B(E2; 2+

1 → 0+
1 ) reduced transition probability.

The results for the Po nuclei are contrasting with the
nearby Hg and Pt isotopes. In an analysis similar to the one
carried out here, but for the Hg isotopes (see Figs. 2 and 3 in
Ref. [179]), the β values extracted from the IBM-CM results
exhibit a strong difference in the interval 180 � A � 190. This
is consistent with the β values extracted from the B(E2; 2+

1 →
0+

1 ) (showing the less deformed oblate structure) and from the
B(E2; 6+

1 → 4+
1 ) (associated with a more deformed prolate

structure) and quite different from the overall smooth drop in
the β values extracted in the Po isotopes. Comparing with the
Pt nuclei, in which fewer data were available (see Fig. 3.27
in Ref. [5]), down to mass A = 188, β values extracted from
the B(E2; 2+

1 → 0+
1 ) and the B(E2; 6+

1 → 4+
1 ) reduced E2

transition probabilities do not show the same large separation
as in the case of the Hg isotopes. In the Pt case, a rather
smooth transition (a bump) from the region with A � 188
moving towards the midshell region exists. This was shown to
be a consequence of the rather strong mixing between regular
and intruder configurations [57,58]. The behavior of β, within
the context of the IBM-CM, indicated a similar bump as a
function of mass number [59].

Interesting information about the changing collective struc-
ture along the yrast band for the Po can be extracted studying
the variation of the moment of inertia as one moves up the
band structure. A quantitative measure that is often used is the
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FIG. 17. (Color online) Comparison of the experimental (a) and
theoretical (b) kinematic moment of inertia for selected Po isotopes
with 106 � N � 114.

kinematic moment of inertia J(1), which is defined as [41,180]

J (1) = �
2

2

{
dE

d[J (J + 1)]

}−1

≈ �
2(2J − 1)

2Eγ [J → (J − 2)]
, (20)

where Eγ [J → (J − 2)] is the energy difference E(J ) −
E(J − 2). For an ideal rigid rotor, with a moment of inertia
that is independent of the angular momentum J , the kinematic
moment of inertia reduces to a constant.

In constructing the experimental J(1) values, we use the
yrast band energies for the corresponding Jπ values. However,
approaching the high-spin levels with 8+, 10+, and 12+, it can
happen that noncollective (mainly broken-pair configurations)
do cross the collective structure, giving also rise to isomeric
states as a fingerprint. Consequently, considering those states,
the smooth variation of J(1) will change into a backbending
pattern. Experimental data on lifetimes, γ -ray intensities
characterizing the decay within a band structure, and the
coincidence data with γ rays from the low-energy transitions
in the experimental yrast bands have been used to construct
the resulting J(1) values. In particular, for the Po nuclei (see
Refs. [8,85,89,90,111,114]), we cover the 106 � N � 114
(190 � A � 198), region, with the results presented in Fig. 17.
A similar analysis spanning a smaller set of Po nuclei was
carried out in Refs. [8,86,110,111]. One observes a very
smooth increase along the yrast band, moving up to rather
high spin values in the A = 190 (up to spin 14+), 192, and 194
(up to spin 10+) isotopes, consistent with the energy spectra as
shown in Fig. 1. It is only for the higher-spin states, which are
of a noncollective broken-pair nature, that very small energy
differences appear, not at all consistent with collective excita-
tions and giving rise to strong backbending (not shown here).
From A = 198 and onwards, a different energy pattern for J(1)

is observed. For the lower part of the band, up to the 6+
1 level,

the values of Eγ are roughly constant, indicating the typical
energy differences of a vibrational structure. The fairly correct
reproduction of this trend by the IBM-CM results indicates
that the major physics content is rather well described.

It is also interesting to compare—making use of the
experimental data on band structure and shape coexistence in
the Pb region—the Po nuclei with the neighboring Pb, Hg, and
Pt isotopes to appreciate similarities and differences, covering
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FIG. 18. (Color online) Comparison of the experimental moment
of inertia in Po (a), Pb (b), Hg (c), and Pt (d) for selected isotones
with 106 � N � 114.

the same neutron interval 106 � N � 114, as shown in Fig. 18.
The data used to construct the J(1) band for the Po, Pb, Hg,
and Pt isotopes have been taken from the references given in
Sec. II and Ref. [181].

An obvious observation from Fig. 18 is the fact that at
N = 106, i.e., the nuclei 190Po,188Pb,186Hg, and 184Pt, from
Jπ = 6+ onwards, a very similar variation in the value of J(1)

results. The starting point in these nuclei is ≈30 �
2 MeV−1,

followed by a similar slope up to spins 12+ and 14+. In view of
the well-established prolate character in the case of 188Pb and
186Hg, it is a convincing argument that the ground-state band in
both 190Po and 184Pt, from spins 4+, 6+, and onwards, behave
like a prolate band, too. One also notices that because the
ground state 0+ and first excited 2+ state in 188Pb retain mainly
a spherical character, the low Eγ part exhibits a different
sloping start, very much like it is the case in 186Hg. In the latter
nucleus, there appears an offset of the prolate band versus
the ground-state less-deformed band (oblate, anharmonic
vibrational) causing almost constant values of Eγ to result for
the 2+ and 4+ states. In 190Po and 184Pt, a very smooth behavior
results along the yrast band, extending up to rather high-spin
states and this for the whole region 106 � N � 114. One also
observes a considerable drop in the value of J(1) in this interval,
which is of the order of ≈10 �

2 MeV−1. In this respect, the
Po and Pt nuclei exhibit a rather similar collective behavior,
with the “intruder” states being not that obvious from the
experimental data on excitation energies nor the corresponding
B(E2) electromagnetic properties. Only radii and α-decay
hindrance factors point towards the need to consider both
configuration (regular [N ] and intruder [N + 2]) spaces.

VII. CONCLUSIONS AND OUTLOOK

The Po region constitutes one of the clearer examples where
shape coexistence plays a key role in explaining the major
observed features such as the evolving energy spectra, with
mass number decreasing from the neutron closed shell at
N = 126, approaching the midshell region at N = 104, the
electromagnetic properties, in particular the B(E2) system-
atics, nuclear mean-square charge radii, α-decay hindrance
factors, etc. These isotopes are situated in the region of the Pb,
Hg, and Pt isotopes where the proximity of the Z = 82 proton
closed shell, and its stabilizing effect to keep nuclei mainly into
a spherical shape, in particular for the Pb nuclei, is very evident.
These series of isotopes can be divided in two groups. On the

one hand, there are the Pb and Hg nuclei, in which two (or even
three for the Pb nuclei) types of configurations coexist and
are experimentally well documented, characterized by energy
spectra that exhibit the characteristic parabolic behavior of
the intruder band structure, minimizing its excitation energy
at the midshell, N = 104 [52,59]. On the other hand, there
are the Pt and Po isotopes for which one cannot disentangle
easily the presence of two distinct band structures. Still, in
both the Pt and the Po isotopes, approaching the midshell
point, the first excited 0+ state behaves in an unexpected way,
dropping seriously in excitation energy which can be used as
an indirect hint for the presence of shape coexistence, however,
in a concealed way [58].

In the present paper, we have carried out an extensive study
of the chain of isotopes 190–208Po using the IBM, including pair
boson excitations across the Z = 82 proton closed shell (called
the intruder configuration space), and their interaction with
the regular configuration space, called the IBM-CM. We have
determined the Hamiltonian and the E2 operator describing
this interacting system of bosons through a least-squares fit to
the known experimental data. This then results in the energy
spectra, and, moreover, the calculation of many different
observables such as the B(E2) values, nuclear mean-square
charge radii, gyromagnetic factors, and α-decay-hindrance
factors, giving the possibility to test the nuclear dynamics.
In particular, the latter three observables are shown to serve as
fingerprints to test the relative composition of the nuclear wave
function into its “regular” and “intruder” components, and
thus are strong indicators for the presence of shape coexisting
structures.

A very important issue concerns deriving information on the
nuclear deformation properties. In particular, recent Coulomb
excitation experiments on nuclei far from stability made it
possible to extract a set of reduced E2 matrix elements
〈0+

i || T̂ (E2) || 2+
f 〉. These matrix elements can be used to

construct the so-called “quadrupole shape invariants” for the
0+

1 and 0+
2 states. We have given particular attention to how β

values can be derived from these invariants, or, alternatively,
from known experimental B(E2) values, and compared both
approaches in the case of the Po nuclei. Thereby, a clear
picture of the shape coexistence phenomenon in Po arises.
There are two families of configurations, one slightly deformed
(rather γ -unstable) or spherical that corresponds to the
regular configurations, while the other more deformed and
corresponding to the intruder configurations. Because of the
lack of experimental information it is not possible to determine
unambiguously the shape connected to the two families of
configurations and, indeed, through the use of mean-field
results (see Sec. III) we assume an oblate shape for the intruder
states, although the moment of inertia seems to suggest a
prolate shape for the ground state of 190Po. Both configurations
have a rather large interplay and in the midshell region with
the two 0+ unperturbed bandheads being degenerate in energy,
implying important mixing between the two configuration
spaces. We have found that, in contrast with the Hg nuclei,
the difference in the quadrupole deformation extracted for
the 0+

1 and 0+
2 states is quite small and the mass dependence

very similar, independent of the method used to extract the
quadrupole deformation.
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Concluding, it looks like the data available at present, based
on our present study of the Po isotopes and a comparison with
the Pt isotopes, points towards rather similar structures. In both
cases the ground-state at the midshell is composed mainly from
the intruder configurations, although in the Po isotopes, only
the second part of the neutron shell N = 82–126 has been
studied experimentally. For the Pt isotopes, almost the whole
shell has been covered, but for the Po nuclei, because of the
sparse character of the known data in and below N = 106,
A = 190, a detailed comparison is very difficult. Moreover,
the similar character of the Po and Pt isotopes is supported
from a comparison of the kinematic moments of inertia for
the Po and Pt isotopes: Both exhibit a smooth variation as a
function of neutron number in the interval 106 � N � 114.
Comparing with the corresponding moments of inertia in the
Pb and Hg isotopes, the nuclei 190Po, 188Pb, 186Hg, and 184Pt
(starting at spin 6+) are very similar, resulting in the suggestion
that from that spin, and onwards, the 190Po ground band
behaves like a prolate band. This is further corroborated by
a comparison of the known experimental excitation energies
for the prolate bands that have been observed in 186Hg and in
188Pb for states with spin from 6+ to 10+. They match very
well the corresponding energies in the yrast band structure in

190Po. Possibilities to test this proposal might come partly from
multiple Coulomb excitation with higher-energy projectile
ions (HIE-ISOLDE) and, possibly at a later stage, using one-
and two-nucleon transfer reactions and studying E0 properties
for the Po nuclei, which may lead to the direct observation of a
low-lying excited 0+ state, as suggested by the present study.
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