3,948 research outputs found

    Effects of Replacing Dry-rolled Corn with Increasing Levels of Corn Dried Distillers Grains with Solubles on Characteristics of Digestion, Microbial Protein Synthesis and Digestible Energy of Diet in Hair Lambs Fed High-concentrate Diets.

    Get PDF
    Four male lambs (Katahdin; average live weight 25.9±2.9 kg) with "T" type cannulas in the rumen and proximal duodenum were used in a 4×4 Latin square experiment to evaluate the influence of supplemental dry distillers grain with solubles (DDGS) levels (0, 10, 20 and 30%, dry matter basis) in substitution for dry-rolled (DR) corn on characteristics of digestive function and digestible energy (DE) of diet. Treatments did not influence ruminal pH. Substitution of DR corn with DDGS increased ruminal neutral detergent fiber (NDF) digestion (quadratic effect, p<0.01), but decreased ruminal organic matter (OM) digestion (linear effect, p<0.01). Replacing corn with DDGS increased (linear, p≤0.02) duodenal flow of lipids, NDF and feed N. But there were no treatment effects on flow to the small intestine of microbial nitrogen (MN) or microbial N efficiency. The estimated UIP value of DDGS was 44%. Postruminal digestion of OM, starch, lipids and nitrogen (N) were not affected by treatments. Total tract digestion of N increased (linear, p = 0.04) as the DDGS level increased, but DDGS substitution tended to decrease total tract digestion of OM (p = 0.06) and digestion of gross energy (p = 0.08). However, it did not affect the dietary digestible energy (DE, MJ/kg), reflecting the greater gross energy content of DDGS versus DR corn in the replacements. The comparative DE value of DDGS may be considered similar to the DE value of the DR corn it replaced up to 30% in the finishing diets fed to lambs

    Passaging capability of human corneal endothelial cells derived from old donors with and without accelerating cell attachment

    Get PDF
    In a recent report, we showed that it is possible to establish the culture of Human Corneal Endothelial Cells (HCEnCs) from older donor corneas (usually over 65 year olds) when left to attach in the presence of a viscoelastic solution, potentially increasing the donor pool for culturing HCEnCs. Therefore, we set out to evaluate the outcome of using a viscoelastic solution (Viscoat) to accelerate the attachment of passaged cultured human corneal endothelial cells (HCEnCs). The cells from 28 donor tissues were isolated using peel-and-digest method and evenly seeded into two wells of an 8-well chamber slide. The cells were left to attach after topical application of Viscoat. At confluence, one well was subjected to end-stage characterization, whereas the other well was passaged into another two wells. The cells at P1 were attached with and without the use of Viscoat. The growth rate was monitored; and at confluence, morphometric analysis, corneal endothelial specific (CD166-Tag1A3 & PRDX6-Tag2A12), mitochondrial and respiration assessment (Tom-20 and Seahorse); function-associated (Na+/K+ATPase & ZO-1); proliferative (Ki-67) marker analysis, and viability (Hoechst, Ethidium Homodimer and Calcein AM-HEC) studies were performed. Cells at P0 (with Viscoat) showed 100% confluence at day 9. Cells at P1 with and without Viscoat showed significant difference of confluence 67.0% v 18.8% respectively (p < 0.05). Confluence rate, cell density, hexagonality, Ki-67 positivity and mitochondrial intensity was significantly higher (p < 0.05), whereas cell-area and polymorphism was significantly lower (p < 0.05) in the cells attached with Viscoat compared with the cells attached without Viscoat. There was no significant difference in oxygen consumption rate between the groups. In conclusion, we observed that acceleration in the attachment of passaged HCEnCs with the assistance of Viscoat, could be beneficial for the propagation of HCEnCs isolated from older donors, to increase their propensity to proliferate, without loss of the expression of vital proteins and heterogeneity in cellular morphology

    The Importance of Design in the Development of a Portable and Modular Iot-Based Detection Device for Clinical Applications

    Get PDF
    The integration of human factors engineering methods within the medical device design and development process has been highlighted by international standards organizations. Such methods are contributing to the development of safer medical devices, more suitable to users' needs. Errors during device operation might hamper effective patient diagnosis and treatment, or eventually lead to injury or death. Thus, the designing process of a medical device is indeed crucial to user experience and safety operation. This paper presents a human-centred design analysis of a novel IoT-based screening prototype (iLoF) based on Artificial Intelligence algorithms built-in in a patented-photonics system developed by a deep tech startup. The influence of the design process during the development of the prototype was addressed, based on a human-centred design methodology and considering the device's application environment. iLoF's prototype on-field applicability was evaluated considering a single case-study carried out at one of the main hospitals in Portugal through interviews to ten healthcare professionals with high experience in laboratorial testing. A benchmark assessment and a comparison matrix along with the market products are also presented to fully understand the technology state and to find new solutions that can influence iLoF's product development. © Published under licence by IOP Publishing Ltd

    Maintained partial protection against Streptococcus pneumoniae despite B‐cell depletion in mice vaccinated with a pneumococcal glycoconjugate vaccine

    Get PDF
    Objectives: Anti-CD20 monoclonal antibody therapy rapidly depletes > 95% of CD20+ B cells from the circulation. B-cell depletion is an effective treatment for autoimmune disease and B-cell malignancies but also increases the risk of respiratory tract infections. This effect on adaptive immunity could be countered by vaccination. We have used mouse models to investigate the effects of B-cell depletion on pneumococcal vaccination, including protection against infection and timing of vaccination in relation to B-cell depletion. // Methods: C57BL/6 female mice were B-cell depleted using anti-CD20 antibody and immunized with two doses of Prevnar-13 vaccine either before or after anti-CD20 treatment. B-cell repertoire and Streptococcus pneumoniae–specific IgG levels were measured using whole-cell ELISA and flow cytometry antibody-binding assay. Protection induced by vaccination was assessed by challenging the mice using a S. pneumoniae pneumonia model. // Results: Antibody responses to S. pneumoniae were largely preserved in mice B-cell depleted after vaccination resulting in full protection against pneumococcal infections. In contrast, mice vaccinated with Prevnar-13 while B cells were depleted (with > 90% reduction in B-cell numbers) had decreased circulating anti–S. pneumoniae IgG and IgM levels (measured using ELISA and flow cytometry antibody binding assays). However, some antibody responses were maintained, and, although vaccine-induced protection against S. pneumoniae infection was impaired, septicaemia was still prevented in 50% of challenged mice. // Conclusions: This study showed that although vaccine efficacy during periods of profound B-cell depletion was impaired some protective efficacy was preserved, suggesting that vaccination remains beneficial

    Deep Lesion Graphs in the Wild: Relationship Learning and Organization of Significant Radiology Image Findings in a Diverse Large-scale Lesion Database

    Full text link
    Radiologists in their daily work routinely find and annotate significant abnormalities on a large number of radiology images. Such abnormalities, or lesions, have collected over years and stored in hospitals' picture archiving and communication systems. However, they are basically unsorted and lack semantic annotations like type and location. In this paper, we aim to organize and explore them by learning a deep feature representation for each lesion. A large-scale and comprehensive dataset, DeepLesion, is introduced for this task. DeepLesion contains bounding boxes and size measurements of over 32K lesions. To model their similarity relationship, we leverage multiple supervision information including types, self-supervised location coordinates and sizes. They require little manual annotation effort but describe useful attributes of the lesions. Then, a triplet network is utilized to learn lesion embeddings with a sequential sampling strategy to depict their hierarchical similarity structure. Experiments show promising qualitative and quantitative results on lesion retrieval, clustering, and classification. The learned embeddings can be further employed to build a lesion graph for various clinically useful applications. We propose algorithms for intra-patient lesion matching and missing annotation mining. Experimental results validate their effectiveness.Comment: Accepted by CVPR2018. DeepLesion url adde

    Deletion of the zinc transporter lipoprotein AdcAII causes hyperencapsulation of Streptococcus pneumoniae associated with distinct alleles of the Type I restriction modification system

    Get PDF
    The capsule is the dominant Streptococcus pneumoniae virulence factor, yet how variation in capsule thickness is regulated is poorly understood. Here, we describe an unexpected relationship between mutation of adcAII, which encodes a zinc uptake lipoprotein, and capsule thickness. Partial deletion of adcAII in three of five capsular serotypes frequently resulted in a mucoid phenotype that biochemical analysis and electron microscopy of the D39 adcAII mutants confirmed was caused by markedly increased capsule thickness. Compared to D39, the hyperencapsulated adcAII mutant strain was more resistant to complement-mediated neutrophil killing and was hypervirulent in mouse models of invasive infection. Transcriptome analysis of D39 and the adcAII mutant identified major differences in transcription of the Sp_0505-0508 locus, which encodes an SpnD39III (ST5556II) type I restrictionmodification system and allelic variation of which correlates with capsule thickness. A PCR assay demonstrated close linkage of the SpnD39IIIC and F alleles with the hyperencapsulated adcAII strains. However, transformation of adcAII with fixed SpnD39III alleles associated with normal capsule thickness did not revert the hyperencapsulated phenotype. Half of hyperencapsulated adcAII strains contained the same single nucleotide polymorphism in the capsule locus gene cps2E, which is required for the initiation of capsule synthesis. These results provide further evidence for the importance of the SpnD39III (ST5556II) type I restriction-modification system for modulating capsule thickness and identified an unexpected linkage between capsule thickness and mutation of adcAII. Further investigation will be needed to characterize how mutation of adcAII affects SpnD39III (ST5556II) allele dominance and results in the hyperencapsulated phenotype
    corecore