9 research outputs found

    Radiation Exposure in Endovascular Surgery According to Complexity: Protocol for a Prospective Observational Study

    No full text
    In the past decades, we have witnessed tremendous developments in endovascular surgery. Nowadays, highly complex procedures are performed by minimally invasive means. A key point is equipment improvement. Modern C-arms provide advanced imaging capabilities, facilitating endovascular navigation with an adequate open surgical environment. Nevertheless, radiation exposure remains an issue of concern. This study aims to analyze radiation used during endovascular procedures according to complexity, comparing a mobile X-ray system with a hybrid room (fixed X-ray system). This is an observational and prospective study based on a cohort of non-randomized patients treated by endovascular procedures in a Vascular Surgery department using two imaging systems. The study is planned for a 3-year duration with a recruitment period of 30 months (beginning 20 July 2021) and a 1-month follow-up period for each patient. This is the first prospective study designed to describe the radiation dose according to the complexity of the procedure. Another strength of this study is that radiologic variables are obtained directly from the C-arm and no additional measurements are required for feasibility benefit. The results from this study will help us determine the level of radiation in different endovascular procedures, in view of their complexity

    Measurement of the B0(s) - anti-B0(s) Oscillation Frequency.

    No full text

    Legume consumption is inversely associated with type 2 diabetes incidence in adults: A prospective assessment from the PREDIMED study

    No full text

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore