3,828 research outputs found
Gamma-ray emission from massive young stellar objects
Massive stars form in dense and massive molecular cores. The exact formation
mechanism is unclear, but it is possible that some massive stars are formed by
processes similar to those that produce the low-mass stars, with
accretion/ejection phenomena occurring at some point of the evolution of the
protostar. This picture seems to be supported by the detection of a collimated
stellar wind emanating from the massive protostar IRAS 16547-4247. A triple
radio source is associated with the protostar: a compact core and two radio
lobes. The emission of the southern lobe is clearly non-thermal. Such emission
is interpreted as synchrotron radiation produced by relativistic electrons
locally accelerated at the termination point of a thermal jet. Since the
ambient medium is determined by the properties of the molecular cloud in which
the whole system is embedded, we can expect high densities of particles and
infrared photons. Because of the confirmed presence of relativistic electrons,
inverse Compton and relativistic Bremsstrahlung interactions are unavoidable.
Proton-proton collision should also occur, producing an injection of neutral
pions. In this paper we aim at making quantitative predictions of the spectral
energy distribution of the non-thermal spots generated by massive young stellar
objects, with emphasis on the particular case of IRAS 16547-4247. We present
spectral energy distributions for the southern lobe of this source, for a
variety of conditions. We show that high-energy emission might be detectable
from this object in the gamma-ray domain (MeV to TeV). The source may also be
detectable at X-rays through long exposures with current X-ray instruments.Comment: 8 pages, 6 figures, accepted for publication in A&
Indirect coupling between spins in semiconductor quantum dots
The optically induced indirect exchange interaction between spins in two
quantum dots is investigated theoretically. We present a microscopic
formulation of the interaction between the localized spin and the itinerant
carriers including the effects of correlation, using a set of canonical
transformations. Correlation effects are found to be of comparable magnitude as
the direct exchange. We give quantitative results for realistic quantum dot
geometries and find the largest couplings for one dimensional systems.Comment: 4 pages, 3 figure
New observables in the decay mode anti-B --> anti-K*0 l+ l-
We discuss the large set of observables available from the angular
distributions of the decay anti-B --> anti-K*0 l+ l-. We present a NLO analysis
of all observables based on the QCD factorization approach in the low-dilepton
mass region and an estimate of \Lambda/m_b corrections. Moreover, we discuss
their sensitivity to new physics. We explore the experimental sensitivities at
LHCb (10 fb^-1) and Super-LHCb (100 fb^-1) based on a full-angular fit method
and explore the sensitivity to right handed currents. We also show that the
previously discussed transversity amplitude A_T^(1) cannot be measured at the
LHCb experiment or at future B factory experiments as it requires a measurement
of the spin of the final state particles.Comment: 30 pages, 14 figures. Changes: Typos in (4.3) and (4.11) corrected,
analysis, results and figures unchange
The exclusive B to K*(to K pi) l+ l- decay: CP conserving observables
We study the K* polarization states in the exclusive 4-body B meson decay B
to K* (to K pi) l+ l- in the low dilepton mass region working in the framework
of QCDF. We review the construction of the CP conserving transverse and
transverse/longitudinal observables AT2, AT3, and AT4. We focus here, on
analyzing their behaviour at large recoil energy in presence of right-handed
currents.Comment: 7 pages, 3 figures, invited talk at Flavianet Meeting, Kazimierz,
Poland, July, 200
How accurate are the non-linear chemical Fokker-Planck and chemical Langevin equations?
The chemical Fokker-Planck equation and the corresponding chemical Langevin
equation are commonly used approximations of the chemical master equation.
These equations are derived from an uncontrolled, second-order truncation of
the Kramers-Moyal expansion of the chemical master equation and hence their
accuracy remains to be clarified. We use the system-size expansion to show that
chemical Fokker-Planck estimates of the mean concentrations and of the variance
of the concentration fluctuations about the mean are accurate to order
for reaction systems which do not obey detailed balance and at
least accurate to order for systems obeying detailed balance,
where is the characteristic size of the system. Hence the chemical
Fokker-Planck equation turns out to be more accurate than the linear-noise
approximation of the chemical master equation (the linear Fokker-Planck
equation) which leads to mean concentration estimates accurate to order
and variance estimates accurate to order . This
higher accuracy is particularly conspicuous for chemical systems realized in
small volumes such as biochemical reactions inside cells. A formula is also
obtained for the approximate size of the relative errors in the concentration
and variance predictions of the chemical Fokker-Planck equation, where the
relative error is defined as the difference between the predictions of the
chemical Fokker-Planck equation and the master equation divided by the
prediction of the master equation. For dimerization and enzyme-catalyzed
reactions, the errors are typically less than few percent even when the
steady-state is characterized by merely few tens of molecules.Comment: 39 pages, 3 figures, accepted for publication in J. Chem. Phy
Microscopic structure of fundamental excitations in N=Z nuclei
Excitation energies of the =1 states in even-even as well as =0 and
=1 states in odd-odd = nuclei are calculated within the mean-field
approach. It is shown that the underlying structure of these states can be
determined in a consistent manner only when both isoscalar and isovector
pairing collectivity as well as isospin projection, treated within the
iso-cranking approximation, are taken into account. In particular, in odd-odd
= nuclei, the interplay between quasiparticle excitations (relevant for
the case of =0 states) and iso-rotations (relevant for the case of =1
states) explains the near-degeneracy of these fundamental excitations.Comment: 4 pages, 4 figure
Contact tracing and epidemics control in social networks
A generalization of the standard susceptible-infectious-removed (SIR)
stochastic model for epidemics in sparse random networks is introduced which
incorporates contact tracing in addition to random screening. We propose a
deterministic mean-field description which yields quantitative agreement with
stochastic simulations on random graphs. We also analyze the role of contact
tracing in epidemics control in small-world networks and show that its
effectiveness grows as the rewiring probability is reduced.Comment: 4 pages, 4 figures, submitted to PR
- …