84 research outputs found

    Reactive and mixing processes governing ammonium and nitrate coexistence in a polluted coastal aquifer

    Get PDF
    A comprehensive hydrochemical, stable isotope and microbial analyses characterisation has been performed to evaluate the sources of groundwater, nitrogen pollution and degradation processes occurring in an industrial polluted coastal aquifer in the framework of a complex hydrodynamic system. The coexistence of ammonium and nitrate has been observed in almost all the investigated monitoring wells, reaching maximum values of 100 and 200 mg/L for both species. Chloride and potassium concentration coupled with groundwater stable isotopes data show the influence of local and urban recharge and the occurrence of seawater intrusion in areas near the coastline. δ15N–NH4+ values ranging between −4.9 and +14.9% suggest that different processes such as partial nitrification of ammonium, probably anammox activities and sorption, are occurring at the site. The isotope data for NH4+also showed the existence of the remnant of an old fertilizer plume in the downgradient area. The nitrate isotope data ranging between +9 and +46% and +6 and +26% for δ15N–NO3−and δ18O–NO3−, respectively, suggest that nitrate content is attenuated by denitrification and probably annamox. The fast groundwater flow field is one of the reasons for the coexistence of NH4+and NO3− in groundwater, since both compounds can penetrate the reducing zone of the aquifer. The influence of leakage of sewage pipelines on the aquifer cannot be discerned due to the complexities of the nitrogen attenuation processes, also influenced by pumping activities

    Compound-Specific Isotope Analysis (CSIA) Application for Source Apportionment and Natural Attenuation Assessment of Chlorinated Benzenes

    Get PDF
    In light of the complex management of chlorobenzene (CB) contaminated sites, at which a hydraulic barrier (HB) for plumes containment is emplaced, compound-specific stable isotope analysis (CSIA) has been applied for source apportionment, for investigating the relation between the upgradient and downgradient of the HB, and to target potential CB biodegradation processes. The isotope signature of all the components potentially involved in the degradation processes has been expressed using the concentration-weighted average 13C of CBs + benzene (13Csum). Upgradient of the HB, the average 13Csum of 25.6‰and 29.4‰were measured for plumes within the eastern and western sectors, respectively. Similar values were observed for the potential sources, with 13Csum values of 26.5‰for contaminated soils and 29.8‰for the processing water pipeline in the eastern and western sectors, respectively, allowing for apportioning of these potential sources to the respective contaminant plumes. For the downgradient of the HB, similar CB concentrations but enriched 13Csum values between 24.5‰and 25.9‰were measured. Moreover, contaminated soils showed a similar 13Csum signature of 24.5‰, thus suggesting that the plumes likely originate from past activities located in the downgradient of the HB. Within the industrial property, significant 13C enrichments were measured for 1,2,4-trichlorobenzene (TCB), 1,2-dichlorobenzene (DCB), 1,3-DCB, and 1,4-DCBs, thus suggesting an important role for anaerobic biodegradation. Further degradation of monochlorobenzene (MCB) and benzene was also demonstrated. CSIA was confirmed to be an effective approach for site characterization, revealing the proper functioning of the HB and demonstrating the important role of natural attenuation processes in reducing the contamination upgradient of the HB

    Quantification of Degradation of Chlorinated Hydrocarbons in Saturated Low Permeability Sediments Using Compound-Specific Isotope Analysis

    Get PDF
    This field and modeling study aims to reveal if degradation of chlorinated hydrocarbons in low permeability sediments can be quantified using compound-specific isotope analysis (CSIA). For that purpose, the well-characterized Borden research site was selected, where an aquifer−aquitard system was artificially contaminated by a three component chlorinated solvent mixture (tetrachloroethene (PCE) 45 vol %, trichloroethene (TCE) 45 vol %, and chloroform (TCM) 10 vol %). Nearly 15 years after the contaminant release, several high-resolution concentration and CSIA profiles were determined for the chlorinated hydrocarbons that had diffused into the clayey aquitard. The CSIA profiles showed large shifts of carbon isotope ratios with depth (up to 24‰) suggesting that degradation occurs in the aquitard despite the small pore sizes. Simulated scenarios without or with uniform degradation failed to reproduce the isotope data, while a scenario with decreasing degradation with depth fit the data well. This suggests that nutrients had diffused into the aquitard favoring stronger degradation close to the aquifer−aquitard interface than with increasing depth. Moreover, the different simulation scenarios showed that CSIA profiles are more sensitive to different degradation conditions compared to concentration profiles highlighting the power of CSIA to constrain degradation activities in aquitards

    Catalogue of Pyrgotidae (Diptera: Tephritoidea) from Chile

    Get PDF
    A catalogue of the Pyrgotidae (Diptera) from Chile is provided. All valid names are presented, comprising three species in two genera for the country. All references known to us from the taxonomic and biological literature, to the included names, are provided, including information about name, author, year of publication, page number, type species, type locality, distribution, and references
    • …
    corecore