7 research outputs found
Biana: a software framework for compiling biological interactions and analyzing networks
<p>Abstract</p> <p>Background</p> <p>The analysis and usage of biological data is hindered by the spread of information across multiple repositories and the difficulties posed by different nomenclature systems and storage formats. In particular, there is an important need for data unification in the study and use of protein-protein interactions. Without good integration strategies, it is difficult to analyze the whole set of available data and its properties.</p> <p>Results</p> <p>We introduce BIANA (Biologic Interactions and Network Analysis), a tool for biological information integration and network management. BIANA is a Python framework designed to achieve two major goals: i) the integration of multiple sources of biological information, including biological entities and their relationships, and ii) the management of biological information as a network where entities are nodes and relationships are edges. Moreover, BIANA uses properties of proteins and genes to infer latent biomolecular relationships by transferring edges to entities sharing similar properties. BIANA is also provided as a plugin for Cytoscape, which allows users to visualize and interactively manage the data. A web interface to BIANA providing basic functionalities is also available. The software can be downloaded under GNU GPL license from <url>http://sbi.imim.es/web/BIANA.php</url>.</p> <p>Conclusions</p> <p>BIANA's approach to data unification solves many of the nomenclature issues common to systems dealing with biological data. BIANA can easily be extended to handle new specific data repositories and new specific data types. The unification protocol allows BIANA to be a flexible tool suitable for different user requirements: non-expert users can use a suggested unification protocol while expert users can define their own specific unification rules.</p
Characterization of Protein Hubs by Inferring Interacting Motifs from Protein Interactions
The characterization of protein interactions is essential for understanding biological systems. While genome-scale methods are available for identifying interacting proteins, they do not pinpoint the interacting motifs (e.g., a domain, sequence segments, a binding site, or a set of residues). Here, we develop and apply a method for delineating the interacting motifs of hub proteins (i.e., highly connected proteins). The method relies on the observation that proteins with common interaction partners tend to interact with these partners through a common interacting motif. The sole input for the method are binary protein interactions; neither sequence nor structure information is needed. The approach is evaluated by comparing the inferred interacting motifs with domain families defined for 368 proteins in the Structural Classification of Proteins (SCOP). The positive predictive value of the method for detecting proteins with common SCOP families is 75% at sensitivity of 10%. Most of the inferred interacting motifs were significantly associated with sequence patterns, which could be responsible for the common interactions. We find that yeast hubs with multiple interacting motifs are more likely to be essential than hubs with one or two interacting motifs, thus rationalizing the previously observed correlation between essentiality and the number of interacting partners of a protein. We also find that yeast hubs with multiple interacting motifs evolve slower than the average protein, contrary to the hubs with one or two interacting motifs. The proposed method will help us discover unknown interacting motifs and provide biological insights about protein hubs and their roles in interaction networks
Predicting cancer involvement of genes from heterogeneous data
<p>Abstract</p> <p>Background</p> <p>Systematic approaches for identifying proteins involved in different types of cancer are needed. Experimental techniques such as microarrays are being used to characterize cancer, but validating their results can be a laborious task. Computational approaches are used to prioritize between genes putatively involved in cancer, usually based on further analyzing experimental data.</p> <p>Results</p> <p>We implemented a systematic method using the PIANA software that predicts cancer involvement of genes by integrating heterogeneous datasets. Specifically, we produced lists of genes likely to be involved in cancer by relying on: (i) protein-protein interactions; (ii) differential expression data; and (iii) structural and functional properties of cancer genes. The integrative approach that combines multiple sources of data obtained positive predictive values ranging from 23% (on a list of 811 genes) to 73% (on a list of 22 genes), outperforming the use of any of the data sources alone. We analyze a list of 20 cancer gene predictions, finding that most of them have been recently linked to cancer in literature.</p> <p>Conclusion</p> <p>Our approach to identifying and prioritizing candidate cancer genes can be used to produce lists of genes likely to be involved in cancer. Our results suggest that differential expression studies yielding high numbers of candidate cancer genes can be filtered using protein interaction networks. </p
BIOINFORMATICS APPLICATIONS NOTE PIANA: Protein Interactions and Network Analysis
Summary: We present a software framework and tool called PIANA that facilitates working with protein interaction networks by 1) integrating data from multiple sources, 2) providing a library that handles graph-related tasks and 3) automating the analysis of proteinprotein interaction networks. PIANA can also be used as a standalone application to create protein interaction networks and perform tasks such as predicting protein interactions and helping to identify spots in a 2D electrophoresis gel. Availability: PIANA is under the GNU GPL. Source code, database and detailed documentation may be freely downloaded fro
ModLink+: improving fold recognition by using protein–protein interactions
Motivation:Several strategies have been developed to predict the fold of a target protein sequence, most of which are based on aligning the target sequence to other sequences of known structure. Previously, we demonstrated that the consideration of protein–protein interactions significantly increases the accuracy of fold assignment compared with PSI-BLAST sequence comparisons. A drawback of our method was the low number of proteins to which a fold could be assigned. Here, we present an improved version of the method that addresses this limitation. We also compare our method to other state-of-the-art fold assignment methodologies