54 research outputs found

    An Intercomparison of Satellite-Based Daily Evapotranspiration Estimates under Different Eco-Climatic Regions in South Africa

    Get PDF
    Knowledge of evapotranspiration (ET) is essential for enhancing our understanding of the hydrological cycle, as well as for managing water resources, particularly in semi-arid regions. Remote sensing offers a comprehensive means of monitoring this phenomenon at different spatial and temporal intervals. Currently, several satellite methods exist and are used to assess ET at various spatial and temporal resolutions with various degrees of accuracy and precision. This research investigated the performance of three satellite-based ET algorithms and two global products, namely land surface temperature/vegetation index (TsVI), Penman–Monteith (PM), and the Meteosat Second Generation ET (MET) and the Global Land-surface Evaporation: the Amsterdam Methodology (GLEAM) global products, in two eco-regions of South Africa. Daily ET derived from the eddy covariance system from Skukuza, a sub-tropical, savanna biome, and large aperture boundary layer scintillometer system in Elandsberg, a Mediterranean, fynbos biome, during the dry and wet seasons, were used to evaluate the models. Low coefficients of determination (R2) of between 0 and 0.45 were recorded on both sites, during both seasons. Although PM performed best during periods of high ET at both sites, results show it was outperformed by other models during low ET times. TsVI and MET were similarly accurate in the dry season in Skukuza, as GLEAM was the most accurate in Elandsberg during the wet season. The conclusion is that none of the models performed well, as shown by low R2 and high errors in all the models. In essence, our results conclude that further investigation of the PM model is possible to improve its estimation of low ET measurements

    Remote Sensing of Pasture Quality

    Get PDF
    Worldwide, farming systems are undergoing significant changes due to economic, environmental and social drivers. Agribusinesses must increasingly deliver products specified in terms of safety, health and quality. Increasing constraints are being placed on them by the market, the community and by government to achieve a financial benefit within social and environmental limits (Dynes et al. 2003). In order to meet these goals, producers must know the quantity and quality of the inputs into their feeding systems, be able to reliably predict the products and by-products being generated, and have the skills to be able to manage their business accordingly. Easy access to accurate and objective evaluation of forage is the first key component to meeting these objectives in livestock systems (Dynes et al. 2003) and remote sensing has considerable potential to be informative and cost-effective (Pullanagari et al. 2012b)

    Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

    Get PDF
    An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given

    Savanna grass quality : remote sensing estimation from local to regional scale

    Get PDF

    Optimal dates for assessing long-term changes in tree cover in the semi-arid biomes of South Africa using MODIS NDVI time series (2001-2018)

    No full text
    The varying proportions of tree and herbaceous cover in the grassland and savanna biomes of Southern Africa determine their capacity to provide ecosystem services. The asynchronous phenologies e.g. annual NDVI profiles of grasses and trees in these semi-arid landscapes provide an opportunity to estimate percentage tree-cover by determining the period of maximum contrast between grasses and trees. First, a 16-day NDVI time series was generated from MODIS NDVI data, i.e. MOD13A2 16-day NDVI composite data. Secondly, percentage tree-cover data for 100 sample polygons (4?4) pixels for areas that have not undergone change in tree cover between 2001 and 2018 were derived using high resolution Google Earth imagery. Next, a time series consisting of the coefficients of determination (R2) for the NDVI/tree-cover linear regression were computed for the 100 polygons. Lastly, a threshold R2>0.5 was used to determine the optimal period of the year for mapping tree-cover. It emerged that the narrow period from Julian day 161?177 (June 10?26) was the most consistent period with R2>0.5 in the region. 18 tree-cover maps (2001?2018) were generated using linear regression model coefficients derived from Julian day 161 for each year. Kendall correlation coefficient (tau) was used to determine areas of significant (p < 0.05 and p < 0.01) increasing or decreasing trend in tree-cover. Areas (polygons) that showed increasing tree-cover appeared to be more widespread in the trend map as compared to areas of decreasing tree-cover. An accuracy assessment of the map of increasing tree-cover was conducted using Google Earth high resolution images. Out of 330 and 200 mapped polygons verified using p < 0.05 and 0.01 thresholds, respectively, 180 (54% accuracy) and 132 (65% accuracy) showed evidence of tree recruitment. Farm abandonment appeared to have been the most important factor contributing to increasing tree-cover in the region

    Spatial Analysis of Human Exposure and Vulnerability to Coastal Flooding in Dar es Salaam, Tanzania

    No full text
    Disasters in coastal cities have shown an ever-increasing frequency of occurrence. Population growth and  urbanisation have increased the vulnerability of properties and societies in coastal flood-prone areas. Analysis of  human exposure and vulnerability is one of the main strategies used to determine the necessary measures of flood risk reduction in coastal cities. This study applied multi-criteria evaluation techniques to determine areas vulnerable to floods

    Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data

    Get PDF
    Grass nitrogen (N) and phosphorus (P) concentrations are direct indicators of rangeland quality and provide imperative information for sound management of wildlife and livestock. It is challenging to estimate grass N and P concentrations using remote sensing in the savanna ecosystems. These areas are diverse and heterogeneous in soil and plant moisture, soil nutrients, grazing pressures, and human activities. The objective of the study is to test the performance of non-linear partial least squares regression (PLSR) for predicting grass N and P concentrations through integrating in situ hyperspectral remote sensing and environmental variables (climatic, edaphic and topographic). Data were collected along a land use gradient in the greater Kruger National Park region. The data consisted of: (i) in situ-measured hyperspectral spectra, (ii) environmental variables and measured grass N and P concentrations. The hyperspectral variables included published starch, N and protein spectral absorption features, red edge position, narrow-band indices such as simple ratio (SR) and normalized difference vegetation index (NDVI). The results of the non-linear PLSR were compared to those of conventional linear PLSR. Using non-linear PLSR, integrating in situ hyperspectral and environmental variables yielded the highest grass N and P estimation accuracy (R2 = 0.81, root mean square error (RMSE) = 0.08, and R2 = 0.80, RMSE = 0.03, respectively) as compared to using remote sensing variables only, and conventional PLSR. The study demonstrates the importance of an integrated modeling approach for estimating grass quality which is a crucial effort towards effective management and planning of protected and communal savanna ecosystems

    An assessment of image classifiers for generating machine-learning training samples for mapping the invasive Campuloclinium macrocephalum (Less.) DC (pompom weed) using DESIS hyperspectral imagery

    No full text
    Machine-learning algorithms may require large numbers of reference samples to train depending on the spatial and spectral heterogeneity of the mapping area. Acquiring these reference samples using traditional field data collection methods is a challenge due to time constraints, logistical limitations, and terrain inaccessibility. The aim of study was to assess how parametric, nonparametric, and spectral matching image classifiers can be used to generate a large number of accurate training samples from minimal ground control points to train machine-learning algorithms for mapping the invasive pompom weed using 30 m DESIS hyperspectral data. Three image classifiers, namely, maximum likelihood classifier (MLC), support vector machine (SVM) and spectral angle mapper (SAM) were selected to represent each of the three types of image classifiers under investigation in this study. Results show that the SAM, MLC and SVM classifiers had pixel-based classification accuracies of 87%, 73% and 67% for the pompom-containing pixels class, respectively. Furthermore, an independent field verification for the SAM classification was conducted yielding a 92% overall mapping accuracy for the pompom-containing pixels class. A total of 4000 pompom-containing and 8000 non-pompom-containing training samples were generated from an SAM classification that was trained using only 20 endmembers. Overall, this study presents a potential solution strategy that has significant implications for generating large numbers of reference training samples for mapping invasive alien plants from new generation spaceborne hyperspectral imagery using machine-learning algorithms.The South African Department of Environment, Forestry, and Fisheries (DEFF).https://www.elsevier.com/locate/isprsjprshj2023Geography, Geoinformatics and MeteorologyZoology and Entomolog

    Bulk feeder or selective grazer: African buffalo space use patterns based on fine-scale remotely sensed data on forage quality and quantity

    No full text
    The distribution and behaviour of African large grazers are regulated primarily from the bottom up, with some species showing clear preferences for certain vegetation types. While the African buffalo (Syncerus caffer) is sometimes considered a bulk grazer, other studies indicate that they can be selective and show seasonal variations in their home ranges. We used very high resolution satellite imagery to evaluate how the quality and quantity of the vegetation influence space use by buffalo herds in Kruger National Park, testing the bulk-selective hypotheses. Using telemetry data from six buffalo, we analyzed seasonal differences in home ranges and core areas. We investigated resource selection and preference at various spatial scales for a subset of three buffalo, comparing habitat use against vegetation biomass and nitrogen content, derived from a high resolution RapidEye image of the wet season. Overall buffalo preferred open vegetation types, with sparse trees and fertile soils, and had home ranges that partially overlapped between dry and wet seasons (average overlap 50%). Buffalo formed home ranges non-randomly within the study area, choosing vegetation of higher quality and quantity. Within home ranges, however, they selected for higher quality forage, and not for higher quantity. Our results showed that the dichotomy between unselective bulk grazers or selective feeders can be scale dependent, as buffalo behaved more like bulk feeders at the scale of home ranges but were more selective within their home range, preferring quality over quantity
    corecore