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Abstract: Knowledge of evapotranspiration (ET) is essential for enhancing our understanding of
the hydrological cycle, as well as for managing water resources, particularly in semi-arid regions.
Remote sensing offers a comprehensive means of monitoring this phenomenon at different spatial
and temporal intervals. Currently, several satellite methods exist and are used to assess ET at various
spatial and temporal resolutions with various degrees of accuracy and precision. This research
investigated the performance of three satellite-based ET algorithms and two global products, namely
land surface temperature/vegetation index (TsVI), Penman-Monteith (PM), and the Meteosat Second
Generation ET (MET) and the Global Land-surface Evaporation: the Amsterdam Methodology
(GLEAM) global products, in two eco-regions of South Africa. Daily ET derived from the eddy
covariance system from Skukuza, a sub-tropical, savanna biome, and large aperture boundary layer
scintillometer system in Elandsberg, a Mediterranean, fynbos biome, during the dry and wet seasons,
were used to evaluate the models. Low coefficients of determination (R?) of between 0 and 0.45 were
recorded on both sites, during both seasons. Although PM performed best during periods of high ET
at both sites, results show it was outperformed by other models during low ET times. TsVI and MET
were similarly accurate in the dry season in Skukuza, as GLEAM was the most accurate in Elandsberg
during the wet season. The conclusion is that none of the models performed well, as shown by low
R? and high errors in all the models. In essence, our results conclude that further investigation of the
PM model is possible to improve its estimation of low ET measurements.

Keywords: latent heat flux; evapotranspiration; remote sensing; eddy covariance; large aperture
boundary layer scintillometer

1. Introduction

As an essential climate variable (ECV), evapotranspiration (ET) plays a critical role as a link
of the energy, carbon and water cycles, with latent heat of vaporization serving as the largest sink
of heat in the atmosphere. It is, therefore, important for disciplines such as agriculture, hydrology,

Remote Sens. 2017, 9, 307; d0i:10.3390/rs9040307 www.mdpi.com/journal /remotesensing


http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing

Remote Sens. 2017, 9, 307 2 of 21

meteorology and climatology. Because of its high spatio-temporal variability, it is a challenge to
directly measure this biophysical variable. Remote sensing remains the only feasible means of spatially
estimating ET over varying spatial and temporal extents. Several authors have reviewed the remote
sensing approaches used to estimate ET [1-4] based on their structural complexities, theories and
underlying assumptions, parameterizations, and uncertainties and limitations, and classified them as:
(i) empirical methods involving the use of statistically-derived relationships between ET and vegetation
indices such as the normalized difference vegetation index (NDVI) or the enhanced vegetation index
(EVI) [5-7]; (ii) residual surface energy balance modeling (single- and dual-source models), which
include the Surface Energy Balance Algorithm over Land (SEBAL)/Mapping EvapoTranspiration
at high Resolution with Internalized Calibration (METRIC) [8-11], Surface Energy Balance System
(SEBS) [12,13]; (iii) physically-based methods involving the Penman-Monteith (PM) [14-16] and
Priestley-Taylor (PT) equations [17-19]; and (iv) data assimilation methods applied to the heat diffusion
equation and radiometric surface temperature sequences. Global satellite-based ET products have been
produced using these algorithms, the MOD16 ET product that is estimated using the Penman-Monteith
equation by Mu et al. [20] and Mu et al. [21]; the Meteosat Second Generation ET product (MET)
derived using the physically-based Soil-Vegetation-Atmosphere-Transfer (SVAT) model Tiled ECMWEF
(European Centre for Medium-Range Weather Forecasts) Surface Scheme of Exchange processes at
the Land surface (TESSEL) that uses a combination of atmospheric model outputs and Meteosat
Second Generation’s Spinning Enhanced Visible and Infrared Imager MSG-SEVIRI remote sensing
data [22-24]; and the Global Land-surface Evaporation: the Amsterdam Methodology (GLEAM) based
on the Priestley-Taylor equation and the Gash analytical model of forest rainfall interception [25,26].

Validation and model comparison studies have been done at different locations, time steps
and periods. Yang et al. [27] examined the performances and model physics of three dual-source
ET models, the Hybrid dual-source scheme and Trapezoid framework-based ET Model (HTEM),
the Two-Source Energy Balance (TSEB) model, and the MOD16 ET (PM) algorithm in the Heihe
River Basin in Northwest China. They reported that HTEM outperformed the other models,
whereas PM performed worst; and the reason for poor performance of PM was the model does
not effectively capture soil moisture restriction on ET. Singh and Senay [28] compared four models,
i.e,, METRIC, SEBAL, SEBS, and the Operational Simplified Surface Energy Balance (SSEBop) models,
at three AmeriFlux cropland sites in the Midwestern United States. Their results showed all models
recorded R? of 0.81, with METRIC and SSEBop having low RMSE (<0.93 mm/day) and a high
Nash-Sutcliffe coefficient of efficiency (>0.80), whereas SEBAL and SEBS gave relatively higher bias.
Bhattarai et al. [29] evaluated five models (SEBAL, METRIC, SSEBop, SEBS and Simplified Surface
Energy Balance Index (S5-SEBI)) at four sites (marsh, grass, and citrus surfaces), to identify the most
appropriate for use in the humid southeastern United States. SEBS generally outperformed the
other with RMSE of 0.74 mm/day, whereas SSEBop was consistently the worst performing model
(RMSE = 1.67 mm/day). They observed that for short grass conditions, SEBAL, METRIC, and S-SEBI
worked much better than SEBS. Ershadi et al. [30] assessed the performance of four models, i.e., SEBS,
PM, Priestley-Taylor Jet Propulsion Laboratory (PT-JPL), and Advection-Aridity (AA), in twenty
FLUXNET towers covering different biomes that included grassland, cropland, deciduous broadleaf
forest and evergreen needleleaf forest, mainly in Europe and North America, at half-hourly, hourly
and monthly time steps. Their results showed that PT-JPL outperformed the other models, followed
by SEBS, PM, and lastly AA. Their overall findings, however, were that there was no model that
consistently performed well across all the biomes. A study by Ha et al. [31] in semi-arid pine forests
with variable disturbance history, over a period of four years and at monthly time steps, also showed
that the PT model gave the best results, with the PM model and MOD16 ET product under predicting
ET at all sites. Vinukollu et al. [32] tested SEBS, PT and PM over 16 FLUXNET sites and concluded
that PT outperformed the other models.

Many remote sensing-based ET estimation studies have been performed in different South African
landscapes and land uses, as reviewed by Gibson et al. [3]. The review stresses the importance of
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validating the remotely sensed ET estimates to allow for confidence in their use and application in
the various biomes. Jarmain et al. [33] used a large discontinuous in situ ET dataset, mainly from
agricultural land, to evaluate remote sensing-based ET algorithms (SEBS, SEBAL, METRIC and VIIT),
and recorded poor performance of all the models. Evaporative fraction estimation by these models was
the main source of error, which led to low accuracy in ET estimation. One of the challenges of this study
was the limited data points at each site for substantive statistical analysis, hence, no distinct conclusion
could be made. Jovanovic et al. [34] reported an R2 0f 0.72 and 0.75 in their validation of the 30 min and
daily MET ET products for the fynbos vegetation of the Riverlands Nature Reserve. Ramoelo et al. [35]
validated the PM-derived MOD16 8-day ET product using multiyear eddy covariance-derived ET
datasets for two flux towers in savannahs, Skukuza and Malopeni. Inconsistent results were attributed
to various factors, including the parameterization of the PM model, flux tower measurement errors,
and flux tower footprint vs. MODIS pixel size. Furthermore, Sun et al. [36] used the Skukuza flux tower
data to evaluate a remote sensing-based continental ET product. The results were reasonable during the
wet season, whereas low coefficients of determination were observed in the dry season. One example
of remotely sensed ET applications in South Africa is the use of SEBAL by the eLEAF company,
in collaboration with the Water Research Commission (WRC), the South African’s Department of
Agriculture and academic institutions, to provide information on water use efficiency of irrigated
crops, inclusive of grapes, deciduous fruits, sugarcane and grain crops in the Western Cape Province
of South Africa [37-39]. Overall, limited work has been done to assess and compare the performance
of different ET models in different SA natural ecosystems.

There is still scope to extensively compare different models for different biomes in semi-arid
ecosystems, which would result in the identification of the most accurate and robust model that could
be used to map and monitor ET at national scale. Hence, this study intended to evaluate and compare
the performance of daily ET estimates derived using TsVI and MOD16 Penman—-Monteith-based
models, and GLEAM and MET global products, under two different climatic regions, a subtropical,
savannah, summer rainfall and a Mediterranean, fynbos, winter rainfall climates. From each climatic
region, rainy and dry periods were selected to evaluate the performance of each model.

2. Materials and Methods

One of the challenges in evaluating evapotranspiration models is the availability of accurate and
complete datasets. The comparisons were performed for two eco-regions in South Africa, Skukuza
in the northeast of South Africa, an area characterized by summer rainfall, and Elandsberg in the
southwest of the country, characterized by winter rainfall (Figure 1). A full description of the sites is
given in Section 2.1 below.

2.1. Site Description

2.1.1. Summer Rainfall Savannas and Skukuza Flux Tower

The Skukuza eddy covariance flux tower (25.02°S, 31.50°E) (Figure 2) was established early 2000
as part of the SAFARI 2000 experiment, set up to understand the interactions between the atmosphere
and the land surface in southern Africa [40,41].

The site is located in the Kruger National Park (South Africa) at 365 m above sea level,
and receives 550 & 160 mm precipitation per annum between November and April, with significant
inter-annual variability. The soils are generally shallow, with coarse sandy to sandy loam textures.
The area is characterized by a catenal pattern of soils and vegetation, with broad-leaved Combretum
savanna on the crests dominated by Combretum apiculatum, and fine-leaved Acacia savanna in
the valleys dominated by Acacia nigrescens. The vegetation is mainly open woodland, with
approximately 30% tree canopy cover of mixed Acacia and Combretum savanna types. Tree canopy
height is 5-8 m with occasional trees (mostly Sclerocarya birrea) reaching 10 m. The grassy and
herbaceous understory comprises grasses such as Panicum maximum, Digitaria eriantha, Eragrostis rigidor,
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and Pogonarthria squarrosa. The flux tower was placed on a vegetation transition to measure fluxes

from the different types [40].
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Figure 1. Location of Skukuza eddy covariance flux tower and Elandsberg Large Aperture

Scintillometer (LAS) sites.

Figure 2. Skukuza eddy covariance flux tower station in Kruger National Park.
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Eddy Covariance System

Since 2000, ecosystem-level fluxes of water, heat and carbon dioxide are measured using an eddy
covariance system mounted at 16 m of the 22 m high flux tower. The measurements taken and the
instruments used are summarized in Table 1.

Table 1. Measurements taken at Skukuza eddy covariance system and the instruments used.

Instrument Model/Brand Measurement

Gill Instruments Solent R3, 3-dimensional, orthogonal components of

Sonic anemometer Hampshire, UK wind velocity, u, v, w (m/s)

Closed path gas analyzer IRGA, LiCOR 6262, LiCOR, Lincoln ~ Water vapor, carbon dioxide concentrations

. Kipp and Zonen CNR1, Delft, Incoming and outgoing longwave and
Radiometer The Netherlands shortwave radiation
HFTS3 plates Campbell Scientific Soil heat flux at 5 cm depth
Frequency domain Campbell Scientific CS615, Volumetric soil moisture content at
reflectometry probes Logan, Utah different depths

Ancillary meteorological measurements include air temperature and relative humidity,
also measured at 16 m, using a Campbell Scientific HMP50 (Loughborough, UK) probe; precipitation
at the top of the tower using a Texas TR525M (Dallas, TX, USA) tipping bucket rain gauge; wind speed
and direction using a Climatronics Wind Sensor (Bohemia, NY, USA); and soil temperature using
Campbell Scientific 107 (Logan, UT, USA) soil temperature probe.

Flux footprint modeling for the Skukuza tower was done using footprint models that are
incorporated in the EddyPro software, i.e., the footprint parameterization model of Kljun et al. [42]
and footprint model of Kormann and Meixner [43]. Depending on a number of factors, including wind
direction and friction velocity, atmospheric stability, terrain homogeneity and measurement height,
either of the models are selected to compute the footprint. It was estimated that 90% of the fluxes
originated from an average of 1.6 km upwind from the flux tower, as reported by Ramoelo et al. [35].
The shape of the flux source area is dependent on the wind velocity and direction, and varies
throughout the day. With a surface energy balance closure of 1.03, the LE fluxes were then corrected by:

LEcorr = LE + Res( (€))

LE
H+LE
where LEcorr is corrected latent heat flux, and Res is the residual (Res = Rn — G — H — LE).

2.1.2. Winter Rainfall Fynbos and Elandsberg Large Aperture Scintillometer

Elandsberg Private Nature Reserve (33.47°S; 19.06°E) is situated near Hermon in the valley of
the Berg River, Western Cape Province. It is a South African National Heritage Site, and it is also a
Contractual Nature Reserve, which gives it formal conservation status in terms of fauna and flora.
This study area lies within the West Coast Renosterveld of the fynbos biome. The vegetation of
this area is classified as the Swartland Shale Renosterveld in the form of discrete vegetation patches.
The dominant vegetation types include shrubland and low fynbos, thicket, bushland and high fynbos.
This study area is in a winter rainfall region, with dry summers typical of Mediterranean type climate;
it receives between 250 and 600 mm rainfall per annum.

Along the 900 m transect of the scintillometer, the average vegetation height is 1 m, with general
land cover being shrubland and low fynbos.

Scintillometry System

Prior to selecting the Elandsberg site for LAS installation and ET validation, a study was conducted
to ensure that the area selected meets a number of criteria as a suitable flux tower site, including land
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cover homogeneity (single land cover type within the image pixel, in this case the MODIS pixel),
vegetation height, topographic variability, and atmospheric stability [44]. The site for the scintillometer
study of evapotranspiration was, therefore, selected based on the extent and uniformity of the natural
vegetation, and also to ensure to ensure that the match between the selected pixel and the scintillometer
transect would be accurate enough for the ground-truthing of ET from that pixel.

A mobile large aperture boundary layer scintillometer (LAS) (BLS 900, Scintec, AG, Rottenburg,
Germany) was installed in Elandsberg Nature Reserve in October 2012 and collected data until
November 2013. The scintillometer transmitter (Figure 3 left) was located at 33.47404°S; 19.06239°E,
while the receiver was placed at approximately 900 m from the transmitter (Figure 3 right),
at 33.47001°S; 19.05526°E.

o b ]

Figure 3. (left) LAS transmitter of infrared radiation; and (right) receiver of the optically modified
infrared beam located about 900 m away from the transmitter.

Sensible heat flux was calculated from the changes in the refractive index of air between the
scintillometer transmitter of monochromatic infrared radiation at 880 nm and the receiver. The net
radiation was measured using a net radiometer (Kipp and Zonen, Delft, The Netherlands), installed
at 2 m above the vegetation in the middle of the scintillometer transect. The soil heat flux (G) was
measured using a cluster of four soil heat flux plates (REBS, Inc., Seattle, WA, USA), installed at a
depth of 80 mm at various positions within the MODIS pixel.

An automatic weather station was also installed to record air temperature, relative humidity, wind
speed and direction, solar irradiance, and rainfall. Temperature and relative humidity were measured
at 1.5 m using a CS500 probe (Vaisala, Helsinki, Finland), while windspeed and direction were
measured at 2.5 m height using an RM Young wind sentry (Model 03001—Campbell Scientific Ltd.,
Logan, UT, USA), and solar irradiance was monitored using a pyranometer (Apogee Instruments,
Logan, UT, USA). Rainfall was measured using a tipping rain gauge (Model TE 525WS—Campbell
Scientific Ltd., Logan, UT, USA). Soil water content was also measured at 30 min intervals in the depth
range 0-20 cm using a CS616 capacitance probe (Campbell Scientific Ltd., Logan, UT, USA). All the
sensors were connected to a CR23X data logger (Campbell Scientific Ltd., Logan, UT, USA).

2.2. Model Descriptions

2.2.1. TsVI Method

The concept of the surface temperature-vegetation index triangle (TsVI) method was discovered
by Goward et al. [45], and has been used to retrieve soil water content, analyze land use/land cover
change and monitor droughts with satellite data [11,46—48]. Using the TsVI feature space, Jiang
and Islam [49-51] adapted the PT equation to estimate regional evaporative fraction (EF) and ET.
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This method calculates ET as a function of available energy, i.e., net radiation minus soil heat flux.
Its main assumption is that ET depends on soil moisture and vegetation cover, the method requires
a large heterogeneous area with a varied range of values. The PT parameter ¢, which accounts for
the aerodynamic and canopy resistances in the PT formulation, is replaced with ¢ in the proposed
formula by Jiang and Islam [49], which is determined using the triangular shape of the TsVI feature
space. ET is estimated using:

LE= ¢ {Aﬁymn - G)} @

where ¢ is a combined-effect parameter accounting for aerodynamic resistance (dimensionless), Rn is
surface net radiation (W/m?), G is soil heat flux (W/m?), A is slope of saturated vapor pressure versus
air temperature (kPa/°C), vy is psychrometric constant (kPa/°C).

Defining the ¢ Parameter

The TsVI triangle method proposed by Jiang and Islam [49-51] has been applied at different scales
to estimate the parameter ¢ in the PT method, and thus evaporative fraction (EF). Modifications have
also been made to this method as shown by Wang et al. [52] who combined the triangle method with
thermal inertia, and developed a day-night Ts difference-NDVI triangle using MODIS land surface
products to estimate EF. Stisen et al. [53] also combined the triangle method with thermal inertia,
and developed a quadratic function of NDVI to determine ¢ at dry edge using MSG-SERVIRI data.
Furthermore, Tang et al. [54] replaced NDVI in the construction of the triangle with fractional cover
(Fr), and developed an automatic algorithm to determine the wet and dry edges.

The wet and the dry edges of the two-dimensional triangular space for each vegetation class
are determined first, where the wet/cold edge represents the potential evapotranspiration, and the
dry/warm edge represents water-stressed conditions. This global ¢in and dmax are set at zero for a
dry bare soil surface, and 1.26 for a saturated or well vegetated surface, respectively. Assuming that ¢
increases linearly with a decrease in Ts between ¢ i and ¢max for any given Fr, Gpin ; is then linearly
interpolated between ¢in and Gpmax, with i max = Pmax = 1.26 as:

cbmin,i = d)max X Fy (3)
where
Fo_ NDVI — NDVIin @
" " NDVlImax — NDVIpi,
Then, for each pixel in the triangle, ¢; is then derived by using the normalized temperature:
T —T;
d)i = % X (d)max - d)min,i) + q)min,i (5)
Tmax Tmln

where Trax and Tyin are the corresponding maximum and minimum surface temperatures at the dry
and wet edges, respectively.
The evaporative fraction (EF) is then calculated using;:

EF = ¢ x

Aty ©)

2.2.2. Penman-Monteith Based MOD16 ET Model

The Penman-Monteith (PM) is a physically-based model that incorporates heat and water vapor
mass transfer principles, and is known as the combination equation. Developed and modified by
Penman [55] and Monteith [56], this algorithm was initially designed as a single-source model,
computing ET from a heterogeneous land surface as a single component. Modified versions of
this model now include the estimation of different components of water loss from bare soil and canopy
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intercepted water (evaporation), and transpiration via the canopy. Mu et al. [20] then modified the
model by adding vapor pressure deficit and minimum temperature to constrain stomatal conductance,
using enhanced vegetation index instead of NDVI to calculate vegetation cover fraction and included
the separate calculation of soil evaporation. Further improvements were made to the algorithm,
including calculating ET as a sum of day- and night-time ET, adding soil heat flux calculation,
separating dry and wet (interception) canopy surfaces, and soil surface into saturated and moist
surface, as well as improving stomatal conductance, aerodynamic resistance and boundary layer
resistance estimates [21]. Taking into account that relative humidity, and, by extension, vapor pressure
deficit were soil moisture stress proxies in Mu et al. [20,21], Sun et al. [57] used the soil moisture index
estimated from the TsVI method to constraint soil evaporation.
Latent heat flux is estimated as:

SXA+pxCpx(esat—e€)/ra

AE =
s+7v X (1+§—Z>

@)

where AE is the latent heat flux (W/m?); A is the heat of vaporization (J/ kg); s is the slope of
the curve relating saturated vapor pressure to temperature (Pa/K); A is available energy (W /m?);
p is the air density (kg/m?); Cp is the specific heat capacity of air (J/kg/K); v (Pa/K) is the
psychrometric constant; esy; is the saturation vapor pressure (Pa); e is the actual vapor pressure
(Pa), where esat — e = vapor pressure deficit (VPD); ra (s/m) is the aerodynamic resistance; and rg
(s/m) is the canopy resistance, which is the reciprocal of canopy conductance gc (gc = 1/rc).

The MOD16 remote sensing-based ET algorithm predicts ET globally at 86% accuracy when
compared with eddy measurements of ET over many sites in the AmeriFlux network. Building on
previous algorithms, it uses a physically based PM approach driven by MODIS-derived vegetation
data. ET is calculated as the sum of daytime and nighttime components using vapor pressure deficit
and minimum temperature to control stomatal resistance. Stomatal resistance is scaled up to the
canopy level using LAI to calculate canopy resistance for plant transpiration. The algorithm also
models soil heat flux and separates evaporation from a wet canopy and transpiration from a dry
canopy. Actual soil evaporation is also calculated from a potential evaporation value.

2.2.3. Net Radiation and Soil Heat Flux Estimation

Net radiation (Rn) is the difference between incoming and outgoing long- and shortwave radiation
fluxes on the Earth’s surface. It plays a very important role in the exchange processes of water and
heat over the land surface. It is a critical parameter in the estimation of ET, and all ET models require
its estimation [11,12,55,58].

It is expressed in terms of its components:

Rn=R! - Rl + R — Rl = (1 - )R! + 0e,TE — 06T 8)

where « is the land surface albedo, Ri is the incoming shortwave radiation (W/ m?), R# is the
longwave incoming radiation (W/m?), RlT is the outgoing longwave radiation (W/m?), ¢ is the
Stephan-Botlzmann constant (5.670373 x 1078 W/m?/K?*), ¢, is the atmospheric emissivity, ¢ is the
surface emissivity, and T, and T are air and surface temperature (K), respectively.

For this study, the method of Shine [59] was used to estimate Rg:

Sp cos? 0
R{ = ° - 5 ©
1.2cos0 +e(1 4 cosB) x 10-2 4 0.0455d

where S is the Solar constant (1367 W/m?), 0 is the Solar zenith angle, and e is the vapor pressure.
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Soil heat flux (G) was computed as:
G =Rn(Tc+ (1 — Fr)(Ts — Tc)) (10)

where Tc is ratio of G to Rn for full vegetation cover, and Ts is ratio of G to Rn for dry bare soil.
The result used in the estimation of ET from Rn and G are estimated using the same set of equations
and parameters for the PM and TsVI models, hence the study will also compare these parameters.

2.3. Global Evapotranspiration Products

Apart from evaluating the two ET methods, the performance of two global ET products,
i.e., the Meteo-sat (MET) and the Global Land Evaporation: the Amsterdam Model (GLEAM) ET
products, will also be assessed in this study.

2.3.1. LSA SAF Evapotranspiration Product

The global ET product (MET) by the EUMETSAT Satellite Application Facility on Land
Surface Analysis (LSA-SAF) based on the SEVIRI sensor on-board the Meteosat Second Generation
geostationary satellites (MSG-SEVIRI), is in near-real time, and also available at 30 min and daily time
intervals and 3 km spatial resolution. This product is derived using the physically-based TESSEL
SVAT scheme that uses a combination of the European Centre for Medium-range Weather Forecasts
(ECMWEF) atmospheric model outputs (i.e., air and dew point temperature, humidity, wind speed,
atmospheric pressure and soil moisture) and MSG/SERVIRI remote sensing data [22-24]. This model
divides the pixel into different tiles representing different land covers within the pixel, with some
parameters defined at pixel level and the data are extracted from the ECOCLIMAP database. The pixel
ET is the sum of the weighted contribution of each tile.

It can be downloaded from the Land Surface Analysis Satellite Applications Facility (LSA SAF)
website, http:/ /landsaf.meteo.pt/.

2.3.2. GLEAM Evapotranspiration Product

The Global Land Evaporation: the Amsterdam Model (GLEAM) ET product is derived using
the semi-empirical PT equation and the Gash analytical model of forest rainfall interception [26].
The model uses inputs from different satellites to estimate ET daily at 0.25° spatial resolution. The use
of the simple PT equation means there is no parameterization of stomatal and aerodynamic resistances.
It estimates different evaporation components, including transpiration for three land cover types,
i.e., tall canopies, short vegetation, interception loss, bare-soil evaporation, snow sublimation and
open-water evaporation. The potential ET estimates are then constrained by a multiplicative stress
factor computed based on the content of water in vegetation and the root zone. The final ET estimate
presented in a grid is then given as a weighted average from the three land covers.

2.4. Datasets

The three models that were tested in this study require different inputs and parameterizations.
Table 2 lists each model’s inputs and their sources, i.e., whether satellite or meteorological based.

Table 2. A summary of the different ET algorithms and where they have been applied.

I
Method nputs
Remote Sensing Meteorological
LST-VI triangle LST, EVI, surface emissivity, albedo, LAI, solar zenith angle Ta, Pa, RH

PM LST, EVI, land cover, surface emissivity, albedo, LAI, solar zenith angle Ta, Pa, RH
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2.4.1. In Situ and Meteorological Measurements

To select the ET validation periods, eddy covariance data were filtered based periods having
extensive data with minimal gaps per day and per month, and the availability of all required input
data used in the different models. For each site, two time periods were selected for the summer
and the winter season, i.e., wet and dry periods. For Skukuza, the periods 1-31 January 2012 (wet),
and 5 May-5 June 2012 (dry) were selected, whereas for Elandsberg, 9 November—9 December 2012
(dry), and 7 June—6 July 2013 (wet) were selected.

Meteorological data from each site, including air temperature (Ta), precipitation, relative humidity
(RH), atmospheric pressure (P) and wind speed (u), were used to calibrate the models. From these data,
we calculated daily maximum and minimum air temperature, average daily, daytime and nighttime
temperatures, daily atmospheric pressure, wind speed and relative humidity. The input variable at
each site were measured using the instruments listed in Table 3.

Table 3. Summary of meteorological input variables and their measurement instruments for Skukuza
and Elandsberg.

Measurement Instrument Used

Input Variable Skukuza Elandsberg

Air temperature (°C) ~ Campbell Scientific HMP50 probe CS500 probe (Vaisala, Helsinki, Finland)

Relative humidity (%)  Campbell Scientific HMP50 probe CS500 probe (Vaisala, Helsinki, Finland)
RM Young wind sentry (Model 03001—

Campbell Scientific Ltd., Logan, UT, USA)

Wind speed (m/s) Climatronics Wind Sensor

The 30 min LE measurements from the Skukuza eddy covariance were converted to ET,
which were summed up to daily ET measurements following Mu et al. [21].

From Elandsberg, LE was estimated using the energy balance equation, i.e., as a residual of
the surface energy balance from measurements of Rn, G and H (estimated with the LAS), and then
converted to daily ET estimates.

2.4.2. Remote Sensing Data

This study made use of MODIS Terra/Aqua products as data inputs. The following MODIS
products were used as inputs for this study: daily 1 km MOD11A1 land surface temperature (LST)
and emissivity, 8-day 1 km MOD15A2 leaf area index and FPAR, 16-day 1 km MOD13A2 vegetation
indices (NDVI and EVI), 16-day 1 km MCDA43A3 albedo, and MODO03 geolocation for solar zenith.
These datasets were downloaded from the NASA Land Processes Distributed Active Archive Centre
(LP DAAC) website (https:/ /Ipdaac.usgs.gov/data_access).

For the eight-day datasets (i.e., LAI/FPAR and surface albedo), images for Julian Days 1, 9, 17,
25 and 33 (Skukuza rainy period); 121, 129, 137, 145, 153 and 161 (Skukuza dry period); 313, 321, 329,
337 and 345 (Elandsberg dry period); and 145, 153, 161, 169, 177 and 185 (Elandsberg rainy period)
were downloaded. For the 16-day datasets (i.e., vegetation indices), images for Days 1, 17, 33, 113,
129, 145 and 161 (Skukuza 2012); 305, 321, 337, and 353 (Elandsberg 2012); and 145, 161, 177, and 193
(Elandsberg 2013), were downloaded. The inverse distance weighting interpolation technique was
then applied on consecutive 8-day and 16-day MODIS datasets to estimate the daily values of each
data input. Assumptions made here include that the change of vegetation and land characteristics
over time is slow and systematic, depending on seasonal progression.

Other methods and techniques that compute ET at daily, monthly and seasonal scale have
been developed. These include the integration of the feedback method that uses the complimentary
relationship between actual ET and pan ET [60], data fusion methods (i.e., combining different data
sources) [61,62], and the backward-averaged iterative two-source surface temperature and energy
balance solution (BAITSSS) algorithm [63].
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2.5. Data Analysis

The models described in Section 2.2 were run using the above data to estimate daily ET during
the selected times, i.e., 1 and 31 January 2012 (wet), and 5 May to 5 June 2012 (dry) for Skukuza,
and 9 November to 9 December 2012 (dry), and 7 June to 6 July 2013 (wet) for Elandsberg.

The accuracy of the ET estimates depends on a number of factors, including the algorithms and
their parameterizations and the accuracy of the input datasets. The performance of each model was
assessed using the coefficient of determination (R?), a measure of goodness of fit; bias; mean absolute
error (MAE); root mean square error (RMSE); and relative RMSE (rRMSE), the latter three being
measurements of error/accuracy. RMSE provides information on the short-term performance of a
model by allowing a term by term comparison of the actual difference between the predicted value
and the measured value, although it does not differentiate between under-and over-estimation; bias
provides information on the long-term performance of a model. A positive value gives the average
amount of over-estimation in the estimated values and vice versa.

3. Results

3.1. Ground Measurements of Evapotranspiration and Meteorological Input Variables

The first part of the results describes the meteorological input variations, i.e., daily mean air
temperature (Ta), RH, Rn and precipitation in relation to ET, between the two sites (Skukuza located in
a rainy summer region, and Elandsberg characterized by dry summers).

Daily time series of Ta, RH, Rn, ET and precipitation for Skukuza and Elandsberg for the
validation periods are shown in Figure 4. For Skukuza, the daily ET for the rainy period (DOY 1-31)
ranged between 0.96 and 6.24 mm/day, with an average of 4.06 mm/day-and a standard deviation
of 1.24 mm/day. Temperature varied between 22.16 °C and 30.93 °C, with a mean of 27.25 £ 2.24 °C,
RH ranged between 91.54% and 58.27%, with an average of 69.95%, and average Rn for this period
was 144.32 £ 43.7 W/m?. A total of 279.69 mm precipitation was recorded within the same period.
During the dry period (DOY 128-153), daily ET ranged between 0.53 and 1.47 mm/day, with an
average of 0.99 4 0.26 mm/day, Rn was between 40.15 and 91.92 W/m?, and mean air temperature of
18.68 & 1.44 °C was recorded; no precipitation was recorded during the same period.
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Figure 4. Meteorological data input measurements for: DOY 1-31 (a); and DOY 128-153 (b) periods in
Skukuza eddy covariance flux tower site; and DOY 314-346 (c); and DOY 153 and 180 (d) periods in
Elandsberg LAS site.
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In Elandsberg, in the summer season (DOY 314-346), which is also the dry season, Ta recorded
an average of 21 & 3.45 °C, whereas RH was between 27.76% and 77%, with Rn ranging from 7.83
to 189 W/m?; ET ranged between 1.05 and 4.06 mm/day, with an average of 2.78+0.76 mm/day,
and a total precipitation of 9.2 mm. The wet, or winter period (DOY 153 and 180) recorded a total of
191 mm rainfall, and daily ET varied between 0.17 and 2.22 mm/day, with a mean of 0.65 mm/day
and standard deviation of 0.37 mm/day, Ta ranged from 8.39 to 20.45 °C, RH varied between 8.58%
and 100%, whereas Rn recorded daily averages between —14.47 and 46.52 W /m?.

3.2. ET Models Performance Evaluation

In this subsection, the performance of the evapotranspiration models, TsVI and MOD16-based
Penman-Monteith, and MET and GLEAM global products estimates, against in situ measurements
is analyzed over two different seasons and ecosystems. This section will look at the performance of
the models per location per season, and also compare the different locations per model per season.
The results of the analysis are illustrated in Figures 5 and 6, and the statistical analyses are summarized
in Table 4. We also evaluated the modeled Rn and G against values that were measured at the sites.
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Figure 5. Time series of measured and modeled ET for the: wet (a); and dry (b) periods in Skukuza
eddy covariance flux tower site; and the dry (c); and wet (d) periods in Elandsberg LAS site.

Table 4. Statistics of estimated daily ET against measured ET for Skukuza flux and Elandsberg LAS.

Skukuza Elandsberg

Statistics Wet Dry Dry Wet

TsVI PM MET GLEAM TsVI PM MET GLEAM TsVI PM MET GLEAM TsVI PM MET GLEAM
R? 013 005 045 0.15 024 034 0.07 0.42 042 036 0.08 0.00 0.06 0.09 0.12 0.01
Bias -0.79 —-028 —266 —108 —0.01 —036 —0.17 —-0.64 —0.65 —051 —009 —0.65 021 061 034 —0.19
(mm/day)
MAE

140 089 266 1.46 023 036 0.25 0.64 089 0.69 0.65 0.94 046 069 052 0.28
(mm/day)
RMSE

166 125 285 1.64 029 040 032 0.67 105 085 0.96 1.15 0.60 077 0.63 0.42
(mm/day)

rRMSE 3646 2734 67.50 40.44 2834 39.86 31.09 6596 3542 2873 35.03  40.73 88.91 114.64 119.55 73.02
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Figure 6. Scatterplots of daily measured vs. modeled ET for: Skukuza ((a) wet; and (b) dry);
and Elandsberg ((c) dry; and (d) wet).

3.2.1. Skukuza

Figure 5a,b illustrates the temporal variation of the flux tower based and the modeled ET,
Figure 6a,b show the correlations between the flux tower and modeled ET, and Table 3 highlighting
the statistics of the models comparisons. Generally, all the models underestimated ET on both
seasons, as shown by the negative biases (Table 3) that ranged between —2.66 mm/day (MET) and
—0.79 mm/day (PM) in the wet season, and —0.64 mm/day (GLEAM) and —0.01 mm/day (TsVI)
during the dry season. The high underprediction of ET by MET and GLEAM during the wet period
is also illustrated in Figures 5a and 6a, whereas PM showed the least underprediction of ET. During
the dry season, TsVI (—0.01 mm/day) had the lowest underestimation, and GLEAM (—0.64 mm/day)
had the highest underestimation (Figures 5b and 6b). The slopes ranged between 0.19 (PM) and
0.66 (MET), and intercepts were between 1.23 mm/day (MET) and 3.40 mm/day (PM) in the wet
season. In the dry season, the slopes ranged from 0.20 (MET) to 3.35 (GLEAM), and the intercepts
were between 0.02 mm/day (GLEAM) and 0.66 mm/day (MET). The correlations (R?) of the modeled
ET against the measured ET were relatively low, ranging between 0.05 (PM) and 0.45 (MET) during
the wet season, and 0.07 (MET) and 0.42 (GLEAM) during the dry season. Although it had the lowest
correlation, PM was the best performing model during the wet period, recording the lowest MAE,
RMSE and rRMSE of 0.89 mm/day, 1.25 mm/day and 27.34%, respectively, followed by TsVI and
GLEAM, which had comparable accuracies of 1.40 and 1.46 mm/day, 1.66 and 1.64 mm/day, and
36.46% and 40.44%, MAE, RMSE and rRMSE, respectively. MET performed the least with MAE, RMSE
and rRMSE of 2.66 mm/day, 2.85 mm/day and 67.5%, respectively. In the dry period, TsVI and MET
had comparable accuracies of 0.23 and 0.25 mm/day (MAE), 0.29 and 0.32 mm/day (RMSE), 28.34%
and 31.09% (rRMSE); GLEAM performed the least with MAE 0.64 mm/day, RMSE 0.67 mm/day,
and rRMSE 65.96%.

3.2.2. Elandsberg

Figure 5c,d presents the temporal variation of the LAS-derived ET and the modeled ET estimates,
and Figure 6c,d shows the correlations between the measured and estimated ET. In the dry season,
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there is a general underprediction of ET by the models, as shown in Table 3 and Figure 5c¢,d and
Figure 6¢,d, whereas, during the rainy season, GLEAM underestimated ET. The slopes were between
0.012 (GLEAM) and 1.29 (TsVI), and intercepts ranged between —1.51 (MET) and 2.13 (GLEAM) in
the dry season; during the wet season the slopes ranged from —0.27 (MET) and 0.57 (MET), and the
intercepts were between 0.41 (GLEAM) and 1.41 (PM). The correlations of the modeled ET against the
ground ET ranged between 0 (GLEAM) and 0.42 (TsVI) during the dry season, and lowly 0.01 (GLEAM)
and 0.12 (MET) during the wet season (Table 3). Although it has higher absolute bias and MAE than
MET (—0.09 and 0.65 mm/day), PM (—0.51 and 0.69 mm/day) was best performing with RMSE of
0.85 mm/day, and rRMSE of 28.73%, while MET had RMSE 0.96 mm/day and rRMSE 35.03%, which
was close to TsVI, having recorded RMSE 1.05 mm/day and rRMSE 35.42%. The least accurate in this
instance was GLEAM, which also had comparable results of bias —0.65 mm/day, MAE 0.94 mm/day,
RMSE 1.15 mm/day, and rRMSE 40.73%. In the wet season, the performance of all the models were
very poor, with all of them recording rRMSE of over 70%. The best performing model, GLEAM had
rRMSE 73.02%, RMSE 0.42 mm/day, MAE 0.28 mm/day and bias —0.19 mm/day. Although the
rRMSE for TsVI and MET were 88.91% and 119.55%, respectively, they generally performed very close
to each other, with MAE and RMSE of 0.46 and 0.52 mm/day, 0.60 and 0.63 mm/day, respectively.
The lowest performing model, PM, had a bias, MAE, RMSE and rRMSE of 0.61, 0.69, 0.77 mm/day,
and 114.64%, respectively.

3.2.3. Net Radiation Estimations

Rn and G were computed using the same formulae described above for both ET models at
Skukuza and Elandsberg. These were estimated using both meteorological and remote sensing data
inputs. In Skukuza, the results show that in the wet season the modeled Rn was more the measured
values. During the wet season Rn had exhibited higher accuracies, as shown by R? of 0.46, rRMSE
of 37.07%, whereas in the dry season the R? was extremely low, and rRMSE 22%. On the other hand,
the estimation of G was comparably poor at both times. The estimation of Rn and G in Elandsberg
was also characterized by low coefficient of determination at both periods, with the wet period giving
worse results. To improve the modeling ET using remote sensing based ET models, it is critical to first
ensure that intermediate input parameters like Rn and G are accurately estimated.

4. Discussion

Figure 4 shows high evapotranspiration for both sites during the summer season, even though
Elandsberg is located in a winter rainfall region and receives higher rainfall in winter. With higher
water availability in Elandsberg in winter, evapotranspiration is expected to be higher, however,
low ET is recorded (Figure 4d). In this instance, water availability is not a limiting factor in the process
of evapotranspiration in Elandsberg, solar radiation is. Although different times were used for the
two sites, this simply illustrates the general climatic trends in the two regions, which experience
precipitation at different seasons.

Daily estimates of ET from two models and two products, TsVI, PM, MET and GLEAM,
of varying structural complexities, assumptions and parameterizations were compared with ground
measurements at two different ecoclimatic regions and times. These models gave differing results,
mainly due to algorithm structural errors and input uncertainties and different model sensitivity to
the different inputs. Our study shows that no model clearly outperformed the others on both sites
and times. In Skukuza, PM gave the least error ET estimates in the wet season, whereas during
the dry period TsVI and MET gave relatively comparable results, although TsVI estimates were
slightly better. In Elandsberg also, no model distinctly outperformed the others during the dry season,
as evidenced by the interchange in hierarchy of the statistics between PM and MET; during the wet
season, GLEAM had the least bias, as shown by low MAE and RMSE, despite having the lowest
R? of 0.01 (Table 3). At both sites, we are looking at periods of high radiation and ET during the
summer season, despite limited rainfall in Elandsberg during this period. The poor performance of the
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models during the wet season in Elandsberg could be related to the weather conditions, particularly
since it was raining during these days (Figure 4). The low correlations that were recorded in our
study, notably for Elandsberg wet season, are comparable to other studies that have been done in dry
ecosystems [30,64]. Vinukollu et al. [32] reported low correlations in grasslands and woody savannas
with all the models they tested in their study. They reported Kendall’s tau of 0.01, 0.32 and 0.33 in
woody savanna Tonzi; 0.51, 0.27 and 0.37 in grassland Audubon; and 0.55, 0.54, and 0.59 in grassland
Fort Peck, for SEBS, PM-Mu and PT-Fi models, respectively. In their extensive evaluation of SEBS,
PT-JPL, PM-Mu and GLEAM models, across different ecoclimatic regions, McCabe et al. [65] also found
that the PT-based models, PT-JPL and GLEAM, performed better than the others in most ecoclimatic
regions. Low correlations and accuracies of the models were also recorded as the aridity increased,
such that they excluded the results of shrublands in their further analysis. Ershadi et al. [30] evaluated
the performance of PM, advection-aridity, SEBS and PT-JPL models, and showed that there is no model
that consistently performed well across all biomes. Hu et al. [66] also reported low performance of the
MOD16 ET and MET on shrublands located in semi-arid climates.

Model performance is affected by different attributes, including structural complexities, model
assumptions, parameterizations, and amount of data required. To estimate ET using these models,
both meteorological data measured from the study sites and remote sensing data were used as inputs.
The error and uncertainties of the data inputs are propagated into the models’ outputs. For instance,
the remote sensing inputs of LST and surface emissivity are instantaneous in the case, and eight-day
averages in the cases of vegetation indices, whereas the ground measurements of air temperature,
humidity, atmospheric pressure, wind speed are daily averages. In addition, MODIS products that
were used as inputs in this study come with their level of uncertainty and/or error, presented as part of
the datasets as reported in their user guides [67-69]. The MODIS products used as inputs in this study
are affected by artifacts caused by clouds, atmospheric aerosols, instrument errors and uncertainties of
retrieval algorithms. There is, thus, a need for these data inputs to be improved to improve the ET
estimation. The spatial scale difference between MODIS image footprint of 1 km and the flux tower
and LAS footprints, confounded by the heterogeneity of the landscape, the wind velocity and direction,
and atmospheric stability, within the satellite footprint also contribute error and uncertainty [26,35].
As shown by the flux foot print model, and discussed in Ramoelo et al. [35], with a measurement height
of 16 m, the Skukuza flux tower footprint is approximately 1.6 km, i.e., based on the general rule of
the thumb which suggests the fetch:measurement height ratio of 100,484-m:1 m [70,71]. This indicates
that the flux tower provides a good match to the MODIS pixel size. Although flux footprint modeling
gives a good estimation of the spatial discrepancy between flux tower measurements and the image
pixel, it is beyond the scope of this study. The coarser the image resolution, the higher the landscape
heterogeneity and spatial mismatch, which introduces errors, as shown by McCabe and Wood [72] who
showed that while Landsat and ASTER higher accuracies in ET estimates, MODIS was less accurate.
For evapotranspiration models, it is important to have an accurate estimation of Rn which is a critical
component of each of these models. A low accuracy in Rn, as shown in our study also contributed to
the error and inaccuracies of the ET estimates.

GLEAM and TsVI are PT based, which is a simplified version of the PM, with the TsVI triangle
method being a relatively simple formulation that employs empirical means (using to normalize the
PT parameter (¢) using the LST-vegetation indices triangle feature space, to estimate the evaporative
fraction; it requires fewer inputs and parameterizations required (see Table 2) [73,74]. The simplification
of the model in the estimation of EF also means that the computing complexities of surface and
aerodynamic resistances are avoided, thus reducing errors and uncertainty in ET estimation [2].
The main challenge of the TsVI method is the subjective determination of the wet and dry edges
from the triangle feature space and the neglect of local advection in its formulation. In addition,
during the rainy season or in areas of low variability in vegetation cover range, the triangle feature
space is hard to establish, as evidenced in Elandsberg, where it was generally outperformed by other
models. In other instances, the heterogeneity of the land surface, together with atmospheric forcing
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complicate the establishment of the TsVI relationship. Since the TsVI feature space is established
empirically, the method is site specific. During the rainy days, like in the Elandsberg winter period
and Skukuza summer period, the determination of the wet and dry edges presents a challenge,
hence the non-performance of the model during this period. GLEAM, on the other hand, is more
comprehensive, combining the PT equation, a soil moisture stress computation, and a Gash analytical
model to compute ET as a total of transpiration from tall canopy, short vegetation, soil evaporation
and canopy interception loss [26]. A plus for the GLEAM model is that in water limited regions,
atmospheric water demand is constrained by precipitation, surface soil moisture and vegetation optical
depth (VOD, which is a proxy for leaf water content [75]). Each of the model components within
the GLEAM structure has its own assumptions and complexities with varying levels of error and
uncertainty, which are propagated to the final ET estimate. GLEAM, like the PM used in this study
also computes interception loss separately, as shown in Miralles et al. [26] and Mu et al. [21]. Miralles
et al. [26] assessed the GLEAM product across different biomes and showed daily average correlation
(R) of 0.83. They, however, stated that the distinct seasonal cycle of evaporation in the dry regions
probably balanced out the correlation coefficients positively. In addition to the known challenges
of the PT equation, the main challenge in validating GLEAM ET using flux tower derived ET is the
coarse spatial resolution of the global product. The MET product is derived from a scheme that is
different from the other estimates, based on the energy balance budget. The daily MET product is an
aggregation of 30-min ET values obtained. This presents a challenge when, for instance, there are gaps
in these 30-min ET data, resulting in underestimation. In addition, the issue of spatial heterogeneity
plays a part in the inaccuracies of this course resolution ET product.

PM is the most robust of these models, and theoretically it should present the best performances
compared with the other models. The results (Table 3) however, show that this version of PM was
only good during periods of high ET. One of the biggest challenges of the PM based models is the
parameterization of the aerodynamic and surface resistances, including upscaling stomatal to canopy
resistance. LAI is an important input in the parameterization of canopy resistance, as it is linked
with the biophysical control of vegetation on ET [20,21,74]. Hu et al. [66] explored the relationship
between PM-MOD16 estimated ET and LAI, showing that the two are closely related, especially for
the savannas and the deciduous broadleaf forests. Because soil water availability plays a key role in ET
in semi-arid regions, it is important that models include a soil water constraint function in the model.
However, in this version of PM, relative humidity and VPD were used as proxy for soil water in the
estimation of soil evaporation, hence low accuracy of the model during low ET periods. Currently,
research is focused on incorporating soil water constraint function in the ET modeling, especially in dry
regions. Di et al. [76] incorporated two layers of relative soil moisture parameters in the PM model to
parameterize the surface resistance, and added a multiplier in the vegetation surface resistance model
to cater for the influence of the relative soil moisture in the root zone. Sun et al. [57] also investigated
the incorporation of soil moisture in the PM-Mu method to constrain soil evaporation by using actual
soil water content and the soil water content at saturation to compute the soil resistance, which they
also substituted with a soil moisture index derived from the TsVI triangle method. These studies
showed improved estimations of ET by the PM algorithm during water constrained periods. For the
estimation of ET to cover different ecosystems, PM would have to be assessed further and modified,
especially for semi-arid climatic regions.

5. Conclusions

Accurate estimates of ET are essential especially in semi-arid and arid regions where there is less
water being competed for by different users. Different remote sensing based models and products,
of varying complexities and data input requirements, are available, and their applicability at varying
ecoclimatic regions and scales is consistently under scrutiny.

This study, thus, presented an evaluation of four ET models and global products, i.e., TsVI, PM
and MET and GLEAM global products, in two semi-arid eco-climates. Our results show that there
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is essentially no model that clearly outperforms others at the two sites. Low coefficients ranging
between 0 and 0.45 were recorded on both sites, during both seasons. It was also observed that, during
periods of high ET at both sites, i.e., Skukuza in the wet season and Elandsberg in the dry season, PM
was relatively more accurate than the other models and products, with rRMSEs of lower than 30%.
In Skukuza, TsVI marginally outperformed MET during the dry period, whereas GLEAM gave the
least accurate estimates. ET estimation during the rainy season in Elandsberg was quite poor with
rRMSE:s of over 70%, with GLEAM being most accurate.

The conclusion, therefore, is that none of the models performed well, as shown by low R? and
high errors in all the models. PM gave the least errors during periods of high ET on both sites, whereas
modeling low ET was a challenge.

These results present a prerequisite on the next stage of our study, in which we will investigate
the error and uncertainty in the PM model simulations, inclusive input data (both remote sensing and
meteorological input data), model structure, and parameterizations. In doing this, Ershadi et al. [30]
state that it would allow for the model diagnosis and identification of the main sources of error in ET
estimation, in this case in water-scarce regions.
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