8 research outputs found

    Low Cost Removal Of Disperse Dyes From Aqueous Solution Using Palm Ash.

    Get PDF
    Palm oil and textile industries are important contributors to Malaysia's economic growth. However, these industries also generate various pollutants of the environment. This research explores the possibility using a low cost adsorbent i.e. ash produced from palm oil factory, for the removal of dyes from aqueous solution

    Optimization of glass transition temperature and pot life of epoxy blends using response surface methodology (RSM)

    Get PDF
    The aim of this work was to improve the processability of triglycidyl-p-aminophenol (TGPAP) epoxy resin. To achieve this improvement, a diluent, the diglycidyl ether of bisphenol F (DGEBF or BPF), was added to TGPAP, and the blended epoxy was then cured with 4, 4′-diaminodiphenyl sulfones (DDS). A response surface methodology (RSM) was used, with the target response being to achieve a blended resin with a high glass transition temperature (Tg) and maximum pot life (or processing window, PW). Characterization through dynamic mechanical thermal analysis (DMTA) and using a rheometer indicated that the optimum formulation was obtained at 55.6 wt.% of BPF and a stoichiometric ratio of 0.60. Both values were predicted to give Tg at 180 °C and a processing window of up to 136.1 min. The predicted values were verified, with the obtained Tg and processing window (PW) being 181.2 ± 0.8 °C and 140 min, respectively, which is close to the values predicted using the RSM

    Optimization of Glass Transition Temperature and Pot Life of Epoxy Blends Using Response Surface Methodology (RSM)

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-09-22, pub-electronic 2021-09-27Publication status: PublishedFunder: Universiti Malaysia Pahang; Grant(s): RDU190324Funder: Ministry of Higher Education, Malaysia; Grant(s): RDU190324The aim of this work was to improve the processability of triglycidyl-p-aminophenol (TGPAP) epoxy resin. To achieve this improvement, a diluent, the diglycidyl ether of bisphenol F (DGEBF or BPF), was added to TGPAP, and the blended epoxy was then cured with 4, 4′-diaminodiphenyl sulfones (DDS). A response surface methodology (RSM) was used, with the target response being to achieve a blended resin with a high glass transition temperature (Tg) and maximum pot life (or processing window, PW). Characterization through dynamic mechanical thermal analysis (DMTA) and using a rheometer indicated that the optimum formulation was obtained at 55.6 wt.% of BPF and a stoichiometric ratio of 0.60. Both values were predicted to give Tg at 180 °C and a processing window of up to 136.1 min. The predicted values were verified, with the obtained Tg and processing window (PW) being 181.2 ± 0.8 °C and 140 min, respectively, which is close to the values predicted using the RSM

    Optimization of glass transition temperature and pot life of epoxy blends using response surface methodology (RSM)

    Get PDF
    The aim of this work was to improve the processability of triglycidyl‐p‐aminophenol (TGPAP) epoxy resin. To achieve this improvement, a diluent, the diglycidyl ether of bisphenol F (DGEBF or BPF), was added to TGPAP, and the blended epoxy was then cured with 4, 4′‐diamino‐diphenyl sulfones (DDS). A response surface methodology (RSM) was used, with the target re‐sponse being to achieve a blended resin with a high glass transition temperature (Tg) and maximum pot life (or processing window, PW). Characterization through dynamic mechanical thermal analysis (DMTA) and using a rheometer indicated that the optimum formulation was obtained at 55.6 wt.% of BPF and a stoichiometric ratio of 0.60. Both values were predicted to give Tg at 180 °C and a processing window of up to 136.1 min. The predicted values were verified, with the obtained Tg and processing window (PW) being 181.2 ± 0.8 °C and 140 min, respectively, which is close to the values predicted using the RSM

    Optimization of glass transition temperature and pot life of epoxy blends using Response Surface Methodology (RSM)

    No full text
    The aim of this work was to improve the processability of triglycidyl-p-aminophenol (TGPAP) epoxy resin. To achieve this improvement, a diluent, the diglycidyl ether of bisphenol F (DGEBF or BPF), was added to TGPAP, and the blended epoxy was then cured with 4, 40 -diaminodiphenyl sulfones (DDS). A response surface methodology (RSM) was used, with the target response being to achieve a blended resin with a high glass transition temperature (Tg) and maximum pot life (or processing window, PW). Characterization through dynamic mechanical thermal analysis (DMTA) and using a rheometer indicated that the optimum formulation was obtained at 55.6 wt.% of BPF and a stoichiometric ratio of 0.60. Both values were predicted to give Tg at 180 ◦C and a processing window of up to 136.1 min. The predicted values were verified, with the obtained Tg and processing window (PW) being 181.2 ± 0.8 ◦C and 140 min, respectively, which is close to the values predicted using the RSM
    corecore