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Abstract

Palm oil and textile industries are important contributors to Malaysia's economic growth.

However, these industries also generate various pollutants of the environment. This

research explores the possibility using a low cost adsorbent i.e. ash produced from palm oil

factory, for the removal ofdyes from aqueous solution. For the treatment to be truly low

cost, not only should the adsorbent be easily and cheaply available in abundance but it

should also require minimal or no pre-treatment, for expensive pre-treatment procedures

would add to the overall treatment cost. Two commercial dyes i.e. disperse blue and

disperse red were used. The study incorporates both batch as well as continuous flow

experiments. The effects of different system variables, viz., pH, initial dye concentration
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and agitation time were studied in the batch tests. Acidic pH was found to favour dye

removal. The optimum pH and agitation time for the removal of the two dyes were 2 and 60

min respectively. Both Langmuir and Freundlich isotherms could be used to describe the

adsorption ofthe dyes, with the former yielding somewhat better fits. The experimental

data fitted well to the pseudo-second-order kinetic model with R2 > 0.98 for all

concentrations (50 to 250 mg/l) tested. Column plugging was the main problem

encountered due to fine particle size of the ash. Pelletisation of ash using calcium oxide and

calcium sulphate was not successful. For industrial application, pelletisation will have cost

implications and may not be recommended. Ash may be better used in its natural form in

batch process.

Keywords: Disperse dyes, colour, adsorption, isotherms, kinetics, palm ash.
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1. Introduction

Many industries such as textile, leather tanning, paper and pulp and food consume dyes

extensively. Among them, textile industry ranks first in the usage of dyes for colouration of

fibre [I]. Colour can cause hazards to the environment due to the presence of a large

number of contaminants like toxic organic residues, acids, bases and inorganic

contaminants. Some ofthe dyes are carcinogenic and mutagenic because they were

formerly made by hazardous chemicals such as benzidine, metals etc. [2]. The discharge of

coloured wastes into receiving water bodies not only affects their aesthetic nature but also

interferes with the transmission of sunlight and therefore reduces photosynthetic activity

[3]. This disturbs the natural equilibrium by affecting the aquatic life and food chain.

Due to the chemical stability of dye components, conventional wastewater treatment

technologies are often ineffective for handling wastewater containing synthetic textile dyes

[4]. Considerable research has been done on colour removal from industrial effluents to

decrease their impact on the environment. These technologies include adsorption on

inorganic or organic matrices, decolourisation by photo-catalysis or photo-oxidation

processes, microbiological decomposition, chemical oxidation, ozonation and coagulation.

Adsorption on activated carbon has been proven to be an effective process for dye removal,

but it is an expensive process. Consequently numerous low cost alternatives have been

proposed including peanut hulls [5], waste coir pith [3, 6], corncob and barley husk [7],

Indian Rosewood sawdust [8] and pine sawdust [9]. For an adsorption procedure to be truly

low cost, not only should the adsorbent be easily and cheaply available in abundance but it
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should also require minimal or no pre-treatment, for expensive pre-treatment procedures

would add to the overall treatment cost. An adsorbent requiring no pre-treatment was

sought from oil palm due to its abundance in Malaysia. After oil extraction, large amount of

solid wastes i.e. empty fruit bunches (EFBs), shell and palm fibre are left behind. The EFBs

are usually spread over estate ground as mulch whereas the shell and fibre can be used as

boiler fuel supplement. A huge amount of ash is also produced in the oil extraction process.

Isa et al. [10] have demonstrated the potential use ofpalm ash as an adsorbent. Their study,

however, focussed on iron removal.

The purpose of this study was to evaluate the suitability of using palm ash for the

adsorption of disperse dyes. The effects ofpH, initial dye concentration and agitation time

on the adsorption of disperse dyes onto ash were investigated. The Langmuir and

Freundlich isotherm models were tested for their applicability. The experimental data was

analyzed using the pseudo first-order and second-order adsorption kinetic models and

kinetic constants were evaluated.

2. Materials and Methods

2.1 Ash and Dyes

The boiler ash used as adsorbent in this study was collected from a local palm oil mill in

Penang, Malaysia. It was used directly in the experiment without any pre-treatment. Two

dyes viz., disperse blue and disperse red, were used in this study. Their commercial names

are Begacron Blue BBLS 200% and Miketon Polyester Scarlet ReS, respectively.
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An accurately weighed quantity of each dye was dissolved in distilled water to prepare the

desired concentrations of dye solutions. For each dye type, the absorbance was read in the

range of visible wavelengths (340-825 run) using a spectrophotometer (NOVA 60). The

optimum absorbance wavelength was found to be 665 run for disperse blue and 500 run for

disperse red. The absorbance at the optimum wavelengths was plotted against the

corresponding concentrations of each dye to generate standard curves for use in the

detennination of dye concentrations after treatment.

2.2 Batch studies

Batch adsorption experiments were carried out by agitating 500 mg ofthe ash with 100 ml

of dye solutions of desired concentrations and pH at room temperature using an orbital

shaker operating at 200 rpm. Prior to the measurement of colour, the dye solutions were

filtered through Whatman (No.1) filter paper to exclude the adsorbent particles. Dye

concentrations were measured at the wavelengths corresponding to their maximum

absorbance using a spectrophotometer (Nova 60).

The effect of pH was studied by adjusting the pH of dye solutions using 1 N H2S04 or 1 N

NaOH solutions. pH was measured using a pH meter. The effect of initial dye

concentrations was carried out by shaking 100 ml dye solutions of desired concentrations

(50, 100, 150,200 and 250 mg/l) with 500 mg of the adsorbent. All samples were adjusted

to the optimum pH prior to adsorbent addition. The samples were withdrawn from the

shaker at pre-determined time intervals (5, 10,20,30,60,90, 120, 180,240,300 and 360
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minutes). The amount of dye adsorbed onto the adsorbent, qe (mg/g), was calculated by a

mass balance relationship:

(1)

where Co and Ce are the initial and equilibrium state dye concentrations (mg/l), V is the

volume of the solution (litres) and W is the mass of the adsorbent used (g).

2.3 Continuous flow studies

The continuous flow studies were conducted using disperse blue only. The methods tried

are described in the following Sections.

2.3.1 Up-flow column test with ash as medium

The ash was filled in a glass column of height 20 cm and internal diameter (ID) 1 cm.

Glass wool and wire mesh were fitted at the inlet and outlet ofthe column as supporting

medium and to prevent the loss of adsorbent particles. Distilled water was run through the

column for cleaning prior to the experiment. Synthetic (coloured) wastewater was pumped

through the column at the desired flow rate. To avoid channelling, the dye solution at the

desired concentration was loaded to the column in an up-flow mode. The outlet tube

directed the effluent to a measuring cylinder to measure the volume of the effluent collected

at different times. The concentration of dye solution in the effluent was monitored by

collecting 5 ml of effluent for analysis.
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2.3.2 Up-flow column test with mixture ofash and inert sand as medium

The glass column (1 cm ID, 20 cm high) was clamped vertically and a layer of glass wool

and wire mesh was inserted at bottom. The space above the glass wool was filled with a 1:4

(w/w) mixture ofash and inert sand. Another layer of glass wool was placed on top. The

column medium was rinsed with distilled water to remove impurities before commencing

the dye flow. The operation ofthe column and the analysis followed the description in

Section 2.3.1.

2.3.3 Pelletisation ofash

To increase the particle size and porosity of the column medium (ash), water hydration

process [11] was adopted to produce adsorbent pellets. A fixed amount ofCaO (7.5 g) was

added to 100 ml of distilled water at 70°C. Simultaneously, 15 g of ash and 7.5 g CaS04

were added to the slurry. The slurry was heated up to 95°C and maintained at the

temperature using a hot plate for 2 hours. The water level was always monitored and

maintained. The resulting slurry was then filtered and dried at 200°C for 2 hours to

produce a dry powder type adsorbent. To pelletise the adsorbent, the powder was subjected

to a pressure of 3 tonnes.

3. Results and discussion

3.1 Batch studies

3.1.1 Effect ofpH
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pH plays an important role in the adsorption process; particularly on the adsorption

capacity. The influence of pH on adsorption of the two dyes is shown in Fig. 1. For both

dyes the maximum removal (about 99 %) was achieved at pH 2. As the pH was increased

from 2 to 5 the removal of disperse blue and disperse red decreased to 5 % and 19 %

respectively. Thereafter, the percent removal remained low up to pH 12. Thus the optimum

pH for further studies was adopted as 2 for both dyes.

The results show that acidic pH was favourable for adsorption of the two dyes. In the study

by Ozacar and Sengil [2], the optimum pH for adsorption ofdisperse dyes onto calcined

alunite also occurred at acidic condition. Solution pH would affect both surface binding

sites of adsorbents and aqueous chemistry [9]. In acidic condition, the positive charge

dominates the surface of the adsorbent. Thus, a significantly high electrostatic attraction

exists between the positively charged surface of the adsorbent and negatively charged dye

species [12]. This attractive force increases the adsorption chances of dye species onto the

surface of the adsorbents. As the pH of the system increases, the surface of the adsorbent

tends to become negatively charged, which does not favour the adsorption ofdisperse dyes

due to electrostatic repulsion. At the same time, the presence of excess OH- ions in alkaline

pH, will compete with dye anions for the adsorption sites [12].

Low aqueous solubility ofdisperse dyes as reported by Ramakrishna and Viraraghavan [13]

will result in a higher affinity for solid surfaces than water. Disperse dyes are hydrophobic.

As the solubility of disperse dyes in the aqueous solution is low, they have a tendency to
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accumulate at the surface of adsorbents [2]. Thus, the adsorption capacity will increase if

the solubility of the dyes is low.

3.1.2 Effect ofinitial dye concentration and agitation time

Fig. 2 shows the effect of dye concentration and agitation time on dye removal. The

equilibrium time was found to be 60 minutes for both dyes. The amount of dye adsorbed

per unit weight of adsorbent increased with the increase in initial dye concentration. For

disperse blue and dispersed red the amount of dye adsorbed increased from 9.0 to 47.2 mg

dye/g adsorbent and from 10.5 to 48.6 mg dye/g adsorbent respectively, when the initial

dye concentration was increased from 50 mg/I to 250 mg/l. As other variables such as

adsorbent dosage, pH and agitation speed were the same for different experimental runs,

the dye concentration affected the diffusion of dye molecules through the solution to the

surface of the adsorbent. Higher concentration resulted in higher driving force of the

concentration gradient. This driving force accelerated the diffusion of dyes from the

solution into the adsorbent [9].

It is clear that the efficiency of dye removal depends on the initial dye concentration. The

amount of dye adsorbed increased with increase in dye concentration and remained nearly

constant after the equilibrium time. A similar trend was reported for the adsorption of dyes

malachite green on treated sawdust [1], methylene blue on treated Indian Rosewood

sawdust [8], metal complex dyes on pine sawdust [9], Congo Red on coir pith [12] and

Direct Red 12 on biogas residual slurry [14].
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3.1.3 Adsorption isotherms

Two commonly used isotherms i.e. Langmuir and Freundlich were tested. The Langmuir

isotherm and its linear form are represented by the following equations:

1 [1] 1 1
qe = bQo Ce + Qo

(2)

(3)

where qe is the amount of adsorbate adsorbed per unit weight of adsorbent (mg/g), Qo

denotes the adsorption capacity (mg/g), b indicates the energy of adsorption (litres/mg) and

Ce is the equilibrium concentration of adsorbate in solution (mg/l).

The Freundlich isotherm and its linear form are represented by the following equations:

K C lin
qe = f e (4)

(5)

where K f is the Freundlich capacity factor and lin is the Freundlich intensity parameter.

Plots of the linear forms of Langmuir and Freundlich equations for the two disperse dyes

yielded coefficients as shown in Table 1. Both the Langmuir and Freundlich isotherms were

found to fit well to the experimental data, with the former being slightly better as indicated

by the higher R2 values. The applicability of these isotherms suggests monolayer coverage

of the dye on the surface of the ash. The characteristics of the Langmuir isotherm can be
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expressed by a dimensionless constant, the equilibrium parameter RL [3], which is defined

by:

(6)

where b is the Langmuir constant and Co is the initial dye concentration (mg/l). The value

ofRLindicates whether the isotherm is unfavourable (RL >1), linear (RL= 1), favourable

(0 < RL< 1) or irreversible (RL= 0) [2]. From the b values (Table 1) and range of dye

concentrations (50-250 mg/l) tested, it follows that RLlies between 0 and 1 i.e. the

adsorption is favourable.

The Freundlich equation describes heterogeneous systems and reversible adsorption; and is

not limited to the formation of a complete monolayer. It can be seen from Table 1 that the

correlation coefficients for Freundlich isotherms are only slightly less than those obtained

for the Langmuir expression. Thus, Freundlich isotherm cannot be totally rejected in the

equilibrium studies.

The Freundlich intensity parameter, lin, indicates the deviation ofthe adsorption isotherm

from linearity. Ifn = 1, the adsorption is linear i.e. the adsorption sites are homogeneous

and there is no interaction between the adsorbed species. If lin < 1, the adsorption is

favourable; the adsorption capacity increases and new adsorption sites appear. If lin > 1,

the adsorption is unfavourable; the adsorption bonds become weak and the adsorption

capacities decreases. The values of lin for disperse blue and disperse red being less than 1
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(Table 1) indicate favourable adsorption, The Langmuir and Freundlich expressions for

disperse blue and disperse red removal by ash can be represented as below:

Langmuir equation,

'bl 624.9CeDIsperse ue: qe = -------"--
1+12.625Ce

d
23.8Ce

Disperse re: qe =1+0.3872C
e

Freundlich equation,

Disperse blue: qe =64.5Ce0.4493

D' d 17 7C 0.3863ISperSe re: qe = . e

3.1.4 Adsorption kinetics

(7)

(8)

(9)

(10)

Kinetic modelling was examined to investigate the mechanism of adsorption and the

potential rate controlling processes such as mass transfer and chemical reaction. The

pseudo-first-order and pseudo-second-order kinetic models were used to analyse the

adsorption kinetics of the disperse dyes. The two kinetic models and their linear forms are

as follows:

Pseudo-first-order model,

In(q e - q) =In qe - k1t

(11)

(12)
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Pseudo-second-order model,

tIt
-=--+-
q kzqe

Z
qe

(13)

(14)

where qe and q are the amounts ofdye adsorbed (mg/g) at equilibrium and at time t

respectively.

Figs. 3 and 4 show the linear plots of the pseudo-fIrst-order and pseudo-second-order

models for disperse blue and disperse red respectively. Table 2 shows the values ofkl, kz,

qe and RZ for the models. The results show good agreement of experimental data with the

pseudo-second-order model compared to the pseudo-fIrst-order model for both dyes. As can

be seen from Table 2, the correlation coefficients for the second-order kinetic model were

greater than 0.98 for all cases. And the calculated qe values also agreed well with the

experimental data. It can therefore be inferred that both of the dye adsorption systems

followed the pseudo-second-order kinetic model, for which the rate limiting step may be

chemisorption [2, 15, 16]. A similar phenomenon was observed in the adsorption of

reactive blue 114, reactive yellow 64 and reactive red 124 on calcined alunite [2], Congo

Red on coir pith [12], reactive red 222, reactive yellow 145 and reactive blue 222 on

swollen chitosan beads [15], reactive red 189 on chemical cross-linked chitosan beads [16]

and acid blue 193 on Na-bentonite and DTMA-bentonite [17].
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3.2 Continuous flow studies

3.2.1 up-flow column test with ash as medium

The test was conducted with an influent dye (disperse blue) concentration of 1000 mg/l.

The removal efficiency of the dye in the column test was very encouraging. The leakage of

dye in the effluent was barely detectable. However, operation of the column filled with ash

was difficult consequent of the excessive head loss and reduction in flow velocity due to

the fine particle size of the ash. Throughout the experiment, frequent adjustments were

needed to be made to the variable speed pump because of the increased resistance to flow in

the column with time due to the ash fines. A constant flow rate of 0.5 mllmin could be

maintained at the beginning (up to about 90 minutes) of the run, thereafter column plugging

started and reached a critical level (after about 260 minutes of operation) at which the flow

rate was reduced to only 0.08 mllmin although the pump was running at its maximum

speed. The run had to be terminated before a complete breakthrough curve was obtained.

Maintaining a constant flow rate is important because it determines the residence time in

the column and thus the time of contact between the adsorbate and the adsorbent [18].

When the flow rate and velocity through the bed decrease, there is more time for adsorption

on each layer [19]. But long contact times are not practicable in industrial applications

because higher equipment costs would be required.

3.2.2 Up-flow column test with mixture ofash and inert sand as medium

To overcome the problems associated with high head loss due to fine ash particles, the

column test procedure adopted by Agyei et al. [20] was followed. Inert sand was mixed
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with ash to improve the bed porosity. Before the inert sand was put to use, a batch test was

carried out to check its adsorption capacity for the disperse dye. It was found that the

difference of disperse blue concentration before and after the test was 10%. It was therefore

concluded that the sand may be regarded as inert with respect to dye adsorption. Ash was

mixed with the sand in the ratio of 1:4 (w/w) and the mixture was used for the column test.

Fig. 5 shows the plot of ratio of effluent dye concentration to initial dye concentration

(1000 mg/l) versus cumulative volume of effluent. A complete breakthrough curve was

almost achieved with the ash and inert sand mixture. From Fig. 5, the breakthrough volume

was about 35 ml when the effluent dye concentration was 5% ofthe initial concentration.

The highest effluent dye concentration was about 90% of the initial concentration when the

cumulative volume reached 58 m!.

The flow rate reduced after the column was operated for about 90 minutes (Fig. 6). This

may be due to the high head loss that occurred when the ash formed a layer at the top of the

inert sand bed. At the beginning of the run, the mixture of ash and inert sand was not

stratified. The flow was able to pass through the bed without high pressure loss. But after

the initial rinsing with distilled water and continued column operation, the inert sand with

higher density started to settle down to the bottom of the column whereas the ash with

lower density tended to suspend. The ash gradually built up a layer above the inert sand and

the resistance to flow progressively increased. Finally, the medium in the column was

stratified into two distinct layers i.e. ash and inert sand. The resistance to flow increased as

it passed through the layer of ash. The residence time of the dye solution in the column

increased due to the slow flow rate. The effluent became clearer after the flow rate was
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reduced (Fig. 5) and again the complete breakthrough curve could not to be established by

using this method either.

3.2.3 Pelletisation ofash

The previous column test results showed that the low density and small particle size of the

ash resulted in high resistance to flow and prolonged residence time in the column. These

operational difficulties wi11limit the application ofthe ash as an adsorbent. To study the

efficacy of adsorption by ash in continuous flow, pelletisation following the procedure

described earlier was tried.

This method was used successfully to develop pellet type adsorbent from power plant fly

ash [11]. However, in the present case the process failed to develop the ash pellets. Only a

very small part of the powder mixture of ash, CaD and CaS04 was bound. The strength of

the pellet was very weak. It would be crushed to powder easily. The failure of the

pelletization process may be due to several reasons. The chemical constituents in the power

plant fly ash may be different from the organic ash used in this study. Thus, the chemical

reactions between the adsorbents and chemical binders were not the same. Thus, CaO and

CaS04 may not have been suitable binders in this study. Several other chemical binders

under different reaction conditions have been used in pellet production, such as kaolin and

starch to bind rice hull ash [21] and sugarcane molasses, sugar beet molasses, com syrup

and coal tar to bind sugarcane bagasse, rice hulls and rice straw [22].
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The conditions such as ratio of binders to the adsorbent, the period of hydration, the drying

temperature and the compression force play an important role in the pelletisation process. It

appears that the procedure [11] adopted in this study could not provide optimum conditions

for the pelletisation of oil palm ash. Detail physical and chemical studies of the ash are

required to select a suitable chemical binder. Further studies will also be required for the

pelletised adsorbent because the adsorbent's characteristics may change due to the add-in

chemical binders and the chemical reactions. The efficacy of the pelletised adsorbent will

have to be determined through a new set ofbatch studies and compared with the original

adsorbent's adsorption capacity. The pelletisation process, however, will have additional

cost implications and affect the status of ash as an economical adsorbent.

4.0 Conclusions

In the laboratory-scale studies conducted, palm ash was capable of adsorbing disperse blue

and disperse red dyes effectively from aqueous solutions. The adsorption capacity of the

ash for dye removal was found to be affected by the solution pH, with lower pH favouring

adsorption. This was attributed to the presence of excess positive charge on its surface.

Over 99% removal was achieved for both dyes at pH 2. The required low pH will have an

impact on the operating cost in real practice, but the adsorbent (ash) itself is virtually free.

An analysis of the economy of ash application as adsorbent will have to take into

consideration both these factors. The amount of disperse dyes adsorbed increased with the

increase in contact time and initial dye concentrations. The equilibrium time for both dyes

was 60 minutes. Adsorption of the disperse dyes could be described by both the Langmuir

and Freundlich isotherms, with the former yielding somewhat better fits. The adsorption
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kinetics followed the pseudo-second-order model indicating that chemisorption was the rate

controlling step in the adsorption of the dyes.

The main difficulty encountered in the continuous flow studies was column plugging

because of fine particle size of ash. Different arrangements of the column media were tried

in vain to achieve a constant dye solution flow rate through the column. The breakthrough

curve could not be obtained due to excessive head loss and continuous reduction in flow

rate. Thus, the ash was considered unsuitable for continuous flow applications. An attempt

to convert the ash into pellet also failed and the mixture of ash, calcium oxide and calcium

sulphate remained in powder form after compression.

Ash is an unwanted by-product of the palm oil industry and its pre-treatment is not

desirable especially from the view point of economy. The difficulties encountered in

running the column tests and the high treatment efficiencies obtained in the batch tests

suggest that ash may be better used in its natural form in batch process.
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Figure captions

Fig. 1 - Effect ofpH on disperse dye removal by ash. (Adsorbent dosage 500 mg per 100
ml, agitation time 3 h, dye concentration 50 mg/l)

Fig. 2 - Effect of initial dye concentration and agitation time on dye removal. (Adsorbent
dosage 500 mg per 100 ml, initial pH 2, agitation speed 200 rpm, dye concentrations 50
mg/l, 100 mg/l, 150 mg/l, 200 mg/l, 250 mg/l)

Fig. 3 - Plots ofkinetic models for disperse blue adsorption on ash

Fig. 4 - Plots ofkinetic models for disperse red adsorption on ash

Fig. 5 - Ratio of effluent dye concentration to initial dye concentration (CICo) versus
cumulative volume of dye solution for up-flow column test with mixture of ash and inert
sand in the ratio of 1 : 4 as medium

Fig. 6 - Flow rate versus time for up-flow column test with mixture of ash and inert sand in
the ratio of 1 : 4 as medium

Table captions

Table 1 - Langmuir and Freundlich isotherm constants and correlation coefficients

Table 2 - Parameter values ofpseudo-first-order and pseudo-second-order models
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Table 1 - Langmuir and Freundlich isotherm constants and correlation coefficients

Dye

Disperse blue
Disperse red

Langmuir isothenn coefficients

Qo b R2

49.50 12.6250 0.9489
61.35 0.3872 0.9546

Freundlich isothenn coefficients

Kf lin R2

64.54 0.4493 0.9320
17.67 0.3863 0.8253
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Table 2 - Parameter valuesa of pseudo-fIrst-order and pseudo-second-order models

Dye type and Pseudo first- order model Pseudo second-order model
qe exp

initial cone. kl qe cal R2 k2 qecal R2

(mg/g)
(mg/l) (min-I) (mg/g) (g/mg.min) (mg/g)

Disperse blue

50 9.27 0.0491 4.37 0.9867 0.0220 9.72 0.9986

100 18.59 0.0891 18.96 0.8521 0.0075 19.88 0.9882

150 28.12 0.0794 16.76 0.9839 0.0076 29.76 0.9988

200 35.41 0.0684 8.42 0.8360 0.0158 36.23 0.9998

250 47.33 0.0799 15.83 0.9762 0.0158 48.08 0.9995

Disperse red

50 10.47 0.0424 0.64 0.2740 0.1123 10.55 0.9998

100 21.71 0.0608 3.92 0.7273 0.0311 22.08 0.9999

150 30.90 0.0117 1.90 0.1036 0.0895 30.40 0.9990

200 35.40 0.0719 19.01 0.9763 0.0077 36.76 0.9995

250 48.68 0.1193 16.16 0.7414 0.0091 50.25 0.9992

aqe exp = experimental value, qe cal = calculated value (from model)
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Fig. 1 - Effect of pH on disperse dye removal by ash. (Adsorbent dosage 500 mg per
100 ml, agitation time 3 h, dye concentration 50 mgll)
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Fig. 2 - Effect of initial dye concentration and agitation time on dye removal.
(Adsorbent dosage 500 mg per 100 ml, initial pH 2, agitation speed 200 rpm, dye
concentrations 50 mgtl, 100 mgll, 150 mg/l, 200 mgtl, 250 mgtl)
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Fig. 3 - Plots of kinetic models for disperse blue adsorption on ash
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Fig. 4 - Plots of kinetic models for disperse red adsorption on ash
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Fig. 5 - Ratio of effluent dye concentration to initial dye concentration (Cleo) versus
cumulative volume of dye solution for up-flow column test with mixture of ash and
inert sand in the ratio of 1:4 as medium
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Fig. 6 - Flow rate versus time for up-flow column test with mixture of ash and inert
sand in the ratio of 1:4 as medium
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