129 research outputs found

    Uncertainties in the Transport Properties of Helium Gas at Cryogenic Temperatures Determined Using Molecular Dynamics Simulation

    Full text link
    In this study, the transport properties, such as diffusivity, viscosity, and thermal conductivity, of 4He at the gaseous phase are computed for state points in the temperature range of 10 K to 150 K and pressure range of 0.10 MPa (1 atm) to 0.21 MPa using classical and quantum frameworks. Within the classical molecular dynamics simulation (MDS), the Green-Kubo (GK) approach is used. The GK method has an inherent uncertainty associated with it due to the random fluctuations in the flux autocorrelation functions. Moreover, in the temperature range of 10 K to 40 K, the quantum nature of the helium gas particles becomes prominent. The classical MDS performed does not include these effects and hence introduces uncertainties in the calculated results. We discuss efficient ways of time averaging the autocorrelation function to reduce statistical fluctuations and perform the quantum scattering phase shift calculations within the Chapman-Cowling theory to study the quantum effects. Furthermore, this study also provides the transport properties data in the cryogenic temperature limit of 10 K to 150 K, which is scarcely studied in the literature and can be applied in complex systems.Comment: 29 pages, 6 figures, 5 table

    Hot corrosion behavior of monel 400 and AISI 304 dissimilar weldments exposed in the molten salt environment containing Na2SO4 + 60% V2O5 at 600 °C

    Full text link
    This research work investigates the use of pulsed current for joining two dissimilar metals Monel 400 and AISI 304 using Pulsed Current Gas Tungsten Arc welding using three different filler metals such as ER309L, ERNiCu-7 and ERNiCrFe-3. Microstructure observations showed the presence of Partially Melted Zone (PMZ) at the heat affected zone (HAZ) of all the weldments. The formation of secondary phases was witnessed at the HAZ of Monel 400 on using ERNiCu-7 filler. Tensile studies corroborated that the bimetallic combinations employing ERNiCu-7 offer better tensile properties as compared to ER309L and ERNiCrFe-3 weldments. Parent metal Monel 400 exhibited better corrosion resistance as compared to other zones of the weldments when exposed in the synthetic molten salt environment containing Na2SO4 - 60% V2O5 environment at 600 °C. A detailed structure - property relationship was made using the combined techniques of optical microscopy and SEM. Also the hot corrosion products were revealed using the thermogravimetric plots, XRD and SEM/EDAX analysis

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Synergistic effect of surface texturing and coating on the friction between piston ring and cylinder liner contact

    Full text link
    It is well-established that the piston ring/cylinder liner (PRCL) contact is the major contributor to friction losses in the internal combustion engine. While numerous studies have evaluated the individual effect of surface engineering techniques like surface texturing, coating, on the PRCL system, however, its combined effect has not been thoroughly explored. In this work, the combined effect of surface coating and texturing on the frictional properties of piston ring/cylinder liner (PRCL) contact in different lubrication regimes has been simulated using a reciprocating tribometer rig. A cylinder liner of cast iron material and three different types of piston ring coatings, namely Diamond-like-carbon (DLC), chrome, and moly-chrome-ceramic (MCC) were used as samples. Under all lubrication regimes, the coated samples with texturing had better frictional performance compared to non-textured coated samples. The maximum friction reduction was observed for textured DLC coated samples under boundary lubrication regime. This behaviour was proposed to be a result of the synergistic effect of graphitisation and texturing. </jats:p

    Study of project type and team structure in the Indian software outsourcing industry

    Full text link
    corecore