7 research outputs found
The AEROARMS Project: Aerial Robots with Advanced Manipulation Capabilities for Inspection and Maintenance
This article summarizes new aerial robotic manipulation technologies and methodsâaerial robotic manipulators with dual arms and multidirectional thrustersâdeveloped in the AEROARMS project for outdoor industrial inspection and maintenance (I&M). Our report deals with the control systems, including the control of the interaction forces and the compliance the teleoperation, which uses passivity to tackle the tradeoff between stability and performance the perception methods for localization, mapping, and inspection the planning methods, including a new control-aware approach for aerial manipulation.
Finally, we describe a novel industrial platform with multidirectional thrusters and a new arm design to increase the robustness in industrial contact inspections. In addition, the lessons learned in applying the platform to outdoor aerial manipulation for I&M are pointed out
The AEROARMS Project: Aerial Robots with Advanced Manipulation Capabilities for Inspection and Maintenance
This article summarizes new aerial robotic manipulation technologies and methods-aerial robotic manipulators with dual arms and multidirectional thrusters-developed in the AEROARMS project for outdoor industrial inspection and maintenance (I&M)
Multiple eyes in the skies - Architecture and perception issues in the comets unmanned air vehicles project
International audienceThis paper describes the COMETS (Real-Time Coordination and Control of Multiple Heterogeneous Unmanned Aerial Vehicles) Project, which is aimed at designing and implementing a system for cooperative activities using heterogeneous UAVs. Heterogeneity is considered both in terms of aerial vehicles and onboard processing capabilities ranging from fully autonomous systems to conventional remotely piloted vehicles. COMETS also involves cooperative environmental perception including fire detection and monitoring as well as terrain mapping
Combined dark matter searches towards dwarf spheroidal galaxies with Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS
Cosmological and astrophysical observations suggest that 85\% of the total matter of the Universe is made of Dark Matter (DM). However, its nature remains one of the most challenging and fundamental open questions of particle physics. Assuming particle DM, this exotic form of matter cannot consist of Standard Model (SM) particles. Many models have been developed to attempt unraveling the nature of DM such as Weakly Interacting Massive Particles (WIMPs), the most favored particle candidates. WIMP annihilations and decay could produce SM particles which in turn hadronize and decay to give SM secondaries such as high energy rays. In the framework of indirect DM search, observations of promising targets are used to search for signatures of DM annihilation. Among these, the dwarf spheroidal galaxies (dSphs) are commonly favored owing to their expected high DM content and negligible astrophysical background. In this work, we present the very first combination of 20 dSph observations, performed by the Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS collaborations in order to maximize the sensitivity of DM searches and improve the current results. We use a joint maximum likelihood approach combining each experiment's individual analysis to derive more constraining upper limits on the WIMP DM self-annihilation cross-section as a function of DM particle mass. We present new DM constraints over the widest mass range ever reported, extending from 5 GeV to 100 TeV thanks to the combination of these five different -ray instruments