995 research outputs found
Turing patterns formation on surfaces under deformation: A total lagrangian method approach
En este artículo se desarrollan varios ejemplos numéricos sobre ecuaciones de reacción-difusión con dominio creciente. Para este fin se utiliza el modelo de reacción de Schnakenberg, con parámetros en el espacio de Turing. Por tanto se realizan ensayos numéricos sobre la aparición de los patrones de Turing en superficies que tienen alta tasa de deformación. Para la solución de las ecuaciones de reacción difusión se presenta un método de solución en superficies en 3 dimensiones mediante el método de los elementos finitos bajo el uso de la formulación lagrangiana total. Los resultados muestran que la formación de los patrones de Turing depende de las funciones de deformación de la superficie y la tasa a la cual se presenta el cambio de posición de cada punto del dominio donde se lleva a cabo la solución numérica. Estos resultados pueden esclarecer algunos fenómenos de cambio de patrón en la superficie de la piel de aquellos animales que exhiben manchas características.In this work we have developed several numerical examples of reaction-diffusion equations with growing domain. For this purpose we have used the Schnakenberg reaction model with parameters in space Turing. Therefore numerical tests are performed on the appearance of Turing patterns on surfaces that have high deformation rate. For the solution of reaction diffusion equations is presented a solution method on surfaces in three dimensions using the finite element method under the use of the total Lagrangian formulation. The results show that the formation of Turing patterns depends on the features of surface deformation and the rate at which change in position of each point of the domain. These results can explain some phenomena of change of pattern on the surface of the skin of animals that exhibit characteristic spots.Peer Reviewe
The Kagome-staircase lattice: Magnetic ordering in Ni3V2O8 and Co3V2O8
Ni3V2O8 and Co3V2O8 have spin-1 and spin-3/2 magnetic lattices that are a new
anisotropic variant of the Kagome net, wherein edge-sharing MO6 octahedra form
the rises and rungs of a "Kagome staircase". The anisotropy largely relieves
the geometric frustration, but results in rich magnetic behavior.
Characterization of the magnetization of polycrystalline samples reveals that
the compounds are ferrimagnetic in character. Heat capacity measurements show
the presence of four magnetic phase transitions below 9 K for Ni3V2O8 and two
below 11 K for Co3V2O8. Comparison to the low temperature heat capacity of
isostructural nonmagnetic Zn3V2O8 provides an estimate of the magnetic entropy
involved with the phase transitions. The results suggest that Co3V2O8 may
display magnetic transitions below 2 K.Comment: 9 pages, 5 figure
Interaction of kinematic, kinetic, and energetic predictors of young swimmers’ speed
The aim of this study was to assess the interaction of kinematic, kinetic, and energetic variables as speed predictors in
adolescent swimmers in the front-crawl stroke. Design: Ten boys (mean age [SD] = 16.4 [0.7] y) and 13 girls (mean age
[SD] = 14.9 [0.9] y) were assessed. Methods: The swimming performance indicator was a 25-m sprint. A set of kinematic, kinetic
(hydrodynamic and propulsion), and energetic variables was established as a key predictor of swimming performance. Multilevel
software was used to model the maximum swimming speed. Results: The final model identified time (estimate = −0.008,
P = .044), stroke frequency (estimate = 0.718, P < .001), active drag coefficient (estimate = −0.330, P = .004), lactate concentration
(estimate = 0.019, P < .001), and critical speed (estimate = −0.150, P = .035) as significant predictors. Therefore, the
interaction of kinematic, hydrodynamic, and energetic variables seems to be the main predictor of speed in adolescent swimmers.
Conclusions: Coaches and practitioners should be aware that improvements in isolated variables may not translate into faster
swimming speed. A multilevel evaluation may be required for a more effective assessment of the prediction of swimming speed
based on several key variables rather than a single analysisThis work is supported by national funds (FCT–Portuguese Foundation
for Science and Technology) under the project UIDB/DTP/04045/2020.info:eu-repo/semantics/publishedVersio
The Kagome Antiferromagnet with Defects: Satisfaction, Frustration, and Spin Folding in a Random Spin System
It is shown that site disorder induces noncoplanar states, competing with the
thermal selection of coplanar states, in the nearest neighbor, classical kagome
Heisenberg antiferromagnet (AFM). For weak disorder, it is found that the
ground state energy is the sum of energies of separately satisfied triangles of
spins. This implies that disorder does not induce conventional spin glass
behavior. A transformation is presented, mapping ground state spin
configurations onto a folded triangular sheet (a new kind of ``spin origami'')
which has conformations similar to those of tethered membranes.Comment: REVTEX, 11 pages + 3 pictures upon reques
Recommended from our members
Comparison of Microstructures and Mechanical Properties for Solid Cobalt-Base Alloy Components and Biomedical Implant Prototypes Fabricated by Electron Beam Melting
The microstructures and mechanical behavior of simple, as-fabricated, solid
geometries (with a density of 8.4 g/cm3), as-fabricated and fabricated and annealed
femoral (knee) prototypes all produced by additive manufacturing (AM) using electron
beam melting (EBM) of Co-26Cr-6Mo-0.2C powder are examined and compared in this
study. Microstructures and microstructural issues are examined by optical metallography,
SEM, TEM, EDS, and XRD while mechanical properties included selective specimen
tensile testing and Vickers microindentation (HV) and Rockwell C-scale (HRC) hardness
measurements. Orthogonal (X-Y) melt scanning of the electron beam during AM
produced unique, orthogonal and related Cr23C6 carbide (precipitate) cellular arrays with
dimensions of ~2μm in the build plane perpendicular to the build direction, while
connected carbide columns were formed in the vertical plane, parallel to the build
direction.Mechanical Engineerin
Recommended from our members
Microstructure Architecture Development in Metals and Alloys By Additive Manufacturing Using Electron Beam Melting
The concept of materials with controlled microstructural architecture (MCMA) to
develop and fabricate structural materials with novel and possibly superior properties and
performance characteristics is a new paradigm or paradigm extension for materials science and
engineering. In the conventional materials science and engineering paradigm, structure
(microstructure), properties, processing, and performance features are linked in the development
of desirable materials properties and performance through processing methodologies which
manipulate microstructures. For many metal or alloy systems, thermomechanical treatment
combining controlled amounts of plastic deformation with heat treatment or aging cycles can
achieve improved mechanical properties beyond those attainable by conventional processing
alone (such as rolling or forging for example) through controlled microstructure development. In
this paper we illustrate a new concept involving the fabrication of microstructural architectures
by the process development and selective manipulation of these microstructures ideally defining
material design space. This allows for the additional or independent manipulation of material
properties by additive manufacturing (AM) using electron beam melting (EBM). Specifically we
demonstrate the novel development of a carbide (M23C6) architecture in the AM of a Co-base
alloy and an oxide (Cu2O) precipitate-dislocation architecture in the AM of an oxygen-containing Cu. While more conventional processing can produce various precipitate
microstructures in these materials, EBM produces spatial arrays of precipitate columns or
columnar-like features often oriented in the build direction. These microstructural architectures
are observed by optical microscopy and scanning and transmission electron microscopy.
Prospects for EBM architecture development in precipitation-hardenable Al alloys is also
discussed. In the EBM build process using precursor powders, the electron beam parameters
(including beam focus, scan speed and sequencing) produce localized, requisite thermodynamic
regimes which create or organize the precipitate-related spatial arrays. This feature demonstrates
the utility of AM not only in the fabrication of complex components, but also prospects for
selective property design using CAD for MCMA development: a new or extended processing-microstructure-property-performance paradigm for materials science and engineering in
advanced manufacturing involving solid free-form fabrication (SFF).Mechanical Engineerin
Symmetry breaking due to Dzyaloshinsky-Moriya interactions in the kagome lattice
Due to the particular geometry of the kagom\'e lattice, it is shown that
antisymmetric Dzyaloshinsky-Moriya interactions are allowed and induce magnetic
ordering. The symmetry of the obtained low temperature magnetic phases are
studied through mean field approximation and classical Mont\'e Carlo
simulations. A phase diagram relating the geometry of the interaction and the
ordering temperature has been derived. The order of magnitude of the
anisotropies due to Dzyaloshinsky-Moriya interactions are more important than
in non-frustrated magnets, which enhances its appearance in real systems.
Application to the jarosites compounds is proposed. In particular, the low
temperature behaviors of the Fe and Cr-based jarosites are correctly described
by this model.Comment: 6 (revtex4) twocolumn pages, 6 .eps figures. Submitted to Phys. Rev.
Effects of site dilution on the magnetic properties of geometrically frustrated antiferromagnets
The effect of site dilution by non magnetic impurities on the susceptibility
of geometrically frustrated antiferromagnets (kagome and pyrochlore lattices)
is discussed in the framework of the Generalized Constant Coupling model, for
both classical and quantum Heisenberg spins. For the classical diluted
pyrochlore lattice, excellent agreement is found when compared with Monte Carlo
data. Results for the quantum case are also presented and discussed.Comment: 5 pages, 3 figure
Gamma-Ray Bursts: Jets and Energetics
The relativistic outflows from gamma-ray bursts are now thought to be
narrowly collimated into jets. After correcting for this jet geometry there is
a remarkable constancy of both the energy radiated by the burst and the kinetic
energy carried by the outflow. Gamma-ray bursts are still the most luminous
explosions in the Universe, but they release energies that are comparable to
supernovae. The diversity of cosmic explosions appears to be governed by the
fraction of energy that is coupled to ultra-relativistic ejecta.Comment: Paper presented at "The Restless High-Energy Universe", May 5-8 2003
Royal Tropical Institute, Amsterda
Jamming and percolation in anisotropic random sequential adsorption of straight rigid rods on a two-dimensional triangular lattice
Percolation of linear k-mers (also known as rods or needles) is studied through Monte Carlo simulationsand finite size scaling, in the case of anisotropic random sequential adsorption on the triangular latticeof LxL and periodic boundary conditions. The efects on the percolation threshold of both the size k ofthe species and the anisotropy degree have been studied. Extensive numerical work enables theconfirmation of a non-monotonic size dependence of the threshold in the isotropic case, which becomesmonotonic in the nematic limit. Finally, a complete analysis of critical exponents and universality hasbeen done, showing that the percolation phase transition involved in the system is not affected, havingthe same universality class of the ordinary random percolation.Fil: Perino, Ernesto Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Matoz Fernandez, D.A.. University of Dundee; Reino UnidoFil: Pasinetti, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaXVII Taller Regional de Física Estadística y Aplicaciones a la Materia CondensadaSan LuisArgentinaUniversidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"
- …