31 research outputs found

    Metformin intervention prevents cardiac dysfunction in a murine model of adult congenital heart disease

    Get PDF
    OBJECTIVE: Congenital heart disease (CHD) is the most frequent birth defect worldwide. The number of adult patients with CHD, now referred to as ACHD, is increasing with improved surgical and treatment interventions. However the mechanisms whereby ACHD predisposes patients to heart dysfunction are still unclear. ACHD is strongly associated with metabolic syndrome, but how ACHD interacts with poor modern lifestyle choices and other comorbidities, such as hypertension, obesity, and diabetes, is mostly unknown. METHODS: We used a newly characterized mouse genetic model of ACHD to investigate the consequences and the mechanisms associated with combined obesity and ACHD predisposition. Metformin intervention was used to further evaluate potential therapeutic amelioration of cardiac dysfunction in this model. RESULTS: ACHD mice placed under metabolic stress (high fat diet) displayed decreased left ventricular ejection fraction. Comprehensive physiological, biochemical, and molecular analysis showed that ACHD hearts exhibited early changes in energy metabolism with increased glucose dependence as main cardiac energy source. These changes preceded cardiac dysfunction mediated by exposure to high fat diet and were associated with increased disease severity. Restoration of metabolic balance by metformin administration prevented the development of heart dysfunction in ACHD predisposed mice. CONCLUSIONS: This study reveals that early metabolic impairment reinforces heart dysfunction in ACHD predisposed individuals and diet or pharmacological interventions can be used to modulate heart function and attenuate heart failure. Our study suggests that interactions between genetic and metabolic disturbances ultimately lead to the clinical presentation of heart failure in patients with ACHD. Early manipulation of energy metabolism may be an important avenue for intervention in ACHD patients to prevent or delay onset of heart failure and secondary comorbidities. These interactions raise the prospect for a translational reassessment of ACHD presentation in the clinic

    Metformin intervention prevents cardiac dysfunction in a murine model of adult congenital heart disease.

    Get PDF
    OBJECTIVE: Congenital heart disease (CHD) is the most frequent birth defect worldwide. The number of adult patients with CHD, now referred to as ACHD, is increasing with improved surgical and treatment interventions. However the mechanisms whereby ACHD predisposes patients to heart dysfunction are still unclear. ACHD is strongly associated with metabolic syndrome, but how ACHD interacts with poor modern lifestyle choices and other comorbidities, such as hypertension, obesity, and diabetes, is mostly unknown. METHODS: We used a newly characterized mouse genetic model of ACHD to investigate the consequences and the mechanisms associated with combined obesity and ACHD predisposition. Metformin intervention was used to further evaluate potential therapeutic amelioration of cardiac dysfunction in this model. RESULTS: ACHD mice placed under metabolic stress (high fat diet) displayed decreased left ventricular ejection fraction. Comprehensive physiological, biochemical, and molecular analysis showed that ACHD hearts exhibited early changes in energy metabolism with increased glucose dependence as main cardiac energy source. These changes preceded cardiac dysfunction mediated by exposure to high fat diet and were associated with increased disease severity. Restoration of metabolic balance by metformin administration prevented the development of heart dysfunction in ACHD predisposed mice. CONCLUSIONS: This study reveals that early metabolic impairment reinforces heart dysfunction in ACHD predisposed individuals and diet or pharmacological interventions can be used to modulate heart function and attenuate heart failure. Our study suggests that interactions between genetic and metabolic disturbances ultimately lead to the clinical presentation of heart failure in patients with ACHD. Early manipulation of energy metabolism may be an important avenue for intervention in ACHD patients to prevent or delay onset of heart failure and secondary comorbidities. These interactions raise the prospect for a translational reassessment of ACHD presentation in the clinic

    Asymmetric inheritance of the apical domain and self-renewal of retinal ganglion cell progenitors depend on Anillin function.

    Get PDF
    Divisions that generate one neuronal lineage-committed and one self-renewing cell maintain the balance of proliferation and differentiation for the generation of neuronal diversity. The asymmetric inheritance of apical domains and components of the cell division machinery has been implicated in this process, and might involve interactions with cell fate determinants in regulatory feedback loops of an as yet unknown nature. Here, we report the dynamics of Anillin - an essential F-actin regulator and furrow component - and its contribution to progenitor cell divisions in the developing zebrafish retina. We find that asymmetrically dividing retinal ganglion cell progenitors position the Anillin-rich midbody at the apical domain of the differentiating daughter. anillin hypomorphic conditions disrupt asymmetric apical domain inheritance and affect daughter cell fate. Consequently, the retinal cell type composition is profoundly affected, such that the ganglion cell layer is dramatically expanded. This study provides the first in vivo evidence for the requirement of Anillin during asymmetric neurogenic divisions. It also provides insights into a reciprocal regulation between Anillin and the ganglion cell fate determinant Ath5, suggesting a mechanism whereby the balance of proliferation and differentiation is accomplished during progenitor cell divisions in vivo.journal articleresearch support, non-u.s. gov't2015 Mar 012015 02 05importe

    Alpha kinase 3 signaling at the M-band maintains sarcomere integrity and proteostasis in striated muscle

    Get PDF
    Muscle contraction is driven by the molecular machinery of the sarcomere. As phosphorylation is a critical regulator of muscle function, the identification of regulatory kinases is important for understanding sarcomere biology. Pathogenic variants in alpha kinase 3 (ALPK3) cause cardiomyopathy and musculoskeletal disease, but little is known about this atypical kinase. Here we show that ALPK3 is an essential component of the M-band of the sarcomere and define the ALPK3-dependent phosphoproteome. ALPK3 deficiency impaired contractility both in human cardiac organoids and in the hearts of mice harboring a pathogenic truncating Alpk3 variant. ALPK3-dependent phosphopeptides were enriched for sarcomeric components of the M-band and the ubiquitin-binding protein sequestosome-1 (SQSTM1) (also known as p62). Analysis of the ALPK3 interactome confirmed binding to M-band proteins including SQSTM1. In human pluripotent stem cell-derived cardiomyocytes modeling cardiomyopathic ALPK3 mutations, sarcomeric organization and M-band localization of SQSTM1 were abnormal suggesting that this mechanism may underly disease pathogenesis

    Identification of Starmaker-Like in Medaka as a Putative Target Gene of Pax2 in the Otic Vesicle

    No full text
    Otoliths in bony fishes are involved in the function of the ear in the senses of balance and hearing. In a large-scale random in situ hybridization screen of genes expressed in the medaka developing ear, we identified starmaker-like (stm-l) gene, a novel homologue of zebrafish starmaker and human dentine sialo-phosphoprotein (dspp) gene. Despite the absence of sequence similarity between these genes, here we describe their similar genomic structure and expression patterns hinting for a conserved function. In medaka fry, stm-l is expressed in various organs such as otoliths, teeth, gills, and kidney. Additionally, our results provide evidence that stm-l is a putative downstream target gene of Pax2 transcription factor and Pax2 itself has a promoting function in otolith formation

    Contraintes et fouille de données

    No full text
    La fouille de données est un domaine de recherche actif, visant à découvrir des connaissances implicites dans des bases de données. Nous étudions ici l'intérêt de formalismes issus de la logique du premier ordre pour la fouille de données. En particulier, nous examinons l'intérêt des contraintes, vues comme des formules du premier ordre et interprétées sur un domaine particulier. Un point important de tout formalisme utilisé en ECD est la définition d'une relation de généralité qui permet de structurer l'espace des motifs, et de faciliter ainsi la recherche de motifs intéressants. Nous nous intéressons tout d'abord aux bases de données contraintes qui étendent à la fois les bases de données relationnelles, déductives et spatiales, et qui permettent la définition d'ensembles infinis grâce à la notion de tuples généralisés. Nous étudions ensuite le formalisme des clauses contraintes utilisées en Programmation Logique avec Contraintes. Nous reprenons la définition classique de généralité entre clauses contraintes et nous déterminons dans ce cadre le moindre généralisé, le moindre spécialisé et des opérateurs de raffinement. Nous montrons comment les calculer en pratique sur plusieurs domaines de contraintes spécifiques. Enfin nous introduisons un nouveau motif: les règles caractéristiques. Ces règles sont la combinaison d'un chemin quantifié et d'une contrainte et permettent de capturer la notion de lien entre entités et de contraintes sur ces entités. Nous montrons l'intérêt de telles règles dans le cadre de bases de données géographiques, notamment sur des données géologiques fournies par le Bureau de Recherche Géologique et Minières.ORLEANS-BU Sciences (452342104) / SudocSudocFranceF
    corecore