200 research outputs found

    Silencing of directional migration in roundabout4 knockdown endothelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Roundabouts are axon guidance molecules that have recently been identified to play a role in vascular guidance as well. In this study, we have investigated gene knockdown analysis of endothelial Robos, in particular <it>roundabout 4 </it>(<it>robo4</it>), the predominant Robo in endothelial cells using small interfering RNA technology <it>in vitro</it>.</p> <p>Results</p> <p><it>Robo1 and Robo4 </it>knockdown cells display distinct activity in endothelial cell migration assay. The knockdown of <it>robo4 </it>abrogated the chemotactic response of endothelial cells to serum but enhanced a chemokinetic response to Slit2, while <it>robo1 </it>knockdown cells do not display chemotactic response to serum or VEGF. <it>Robo4 </it>knockdown endothelial cells unexpectedly show up regulation of Rho GTPases. Zebrafish Robo4 rescues both Rho GTPase homeostasis and serum reduced chemotaxis in <it>robo4 </it>knockdown cells. Robo1 and Robo4 interact and share molecules such as Slit2, Mena and Vilse, a Cdc42-GAP. In addition, this study mechanistically implicates IRSp53 in the signaling nexus between activated Cdc42 and Mena, both of which have previously been shown to be involved with Robo4 signaling in endothelial cells.</p> <p>Conclusion</p> <p>This study identifies specific components of the Robo signaling apparatus that work together to guide directional migration of endothelial cells.</p

    Limits on the Stochastic Gravitational Wave Background from the North American Nanohertz Observatory for Gravitational Waves

    Get PDF
    We present an analysis of high-precision pulsar timing data taken as part of the North American Nanohertz Observatory for Gravitational waves (NANOGrav) project. We have observed 17 pulsars for a span of roughly five years using the Green Bank and Arecibo radio telescopes. We analyze these data using standard pulsar timing models, with the addition of time-variable dispersion measure and frequency-variable pulse shape terms. Sub-microsecond timing residuals are obtained in nearly all cases, and the best root-mean-square timing residuals in this set are ~30-50 ns. We present methods for analyzing post-fit timing residuals for the presence of a gravitational wave signal with a specified spectral shape. These optimally take into account the timing fluctuation power removed by the model fit, and can be applied to either data from a single pulsar, or to a set of pulsars to detect a correlated signal. We apply these methods to our dataset to set an upper limit on the strength of the nHz-frequency stochastic supermassive black hole gravitational wave background of h_c (1 yr^-1) < 7x10^-15 (95%). This result is dominated by the timing of the two best pulsars in the set, PSRs J1713+0747 and J1909-3744.Comment: To be submitted to Ap

    Sucrose Nonfermenting-Related Kinase Enzyme-Mediated Rho-Associated Kinase Signaling is Responsible for Cardiac Function.

    Get PDF
    BACKGROUND: Cardiac metabolism is critical for the functioning of the heart, and disturbance in this homeostasis is likely to influence cardiac disorders or cardiomyopathy. Our laboratory has previously shown that SNRK (sucrose nonfermenting related kinase) enzyme, which belongs to the AMPK (adenosine monophosphate-activated kinase) family, was essential for cardiac metabolism in mammals. Snrk global homozygous knockout (KO) mice die at postnatal day 0, and conditional deletion of Snrk in cardiomyocytes (Snrk cmcKO) leads to cardiac failure and death by 8 to 10 months. METHODS AND RESULTS: We performed additional cardiac functional studies using echocardiography and identified further cardiac functional deficits in Snrk cmcKO mice. Nuclear magnetic resonance-based metabolomics analysis identified key metabolic pathway deficits in SNRK knockdown cardiomyocytes in vitro. Specifically, metabolites involved in lipid metabolism and oxidative phosphorylation are altered, and perturbations in these pathways can result in cardiac function deficits and heart failure. A phosphopeptide-based proteomic screen identified ROCK (Rho-associated kinase) as a putative substrate for SNRK, and mass spec-based fragment analysis confirmed key amino acid residues on ROCK that are phosphorylated by SNRK. Western blot analysis on heart lysates from Snrk cmcKO adult mice and SNRK knockdown cardiomyocytes showed increased ROCK activity. In addition, in vivo inhibition of ROCK partially rescued the in vivo Snrk cmcKO cardiac function deficits. CONCLUSIONS: Collectively, our data suggest that SNRK in cardiomyocytes is responsible for maintaining cardiac metabolic homeostasis, which is mediated in part by ROCK, and alteration of this homeostasis influences cardiac function in the adult heart

    The proangiogenic capacity of polymorphonuclear neutrophils delineated by microarray technique and by measurement of neovascularization in wounded skin of CD18-deficient mice

    Get PDF
    Growing evidence supports the concept that polymorphonuclear neutrophils (PMN) are critically involved in inflammation-mediated angiogenesis which is important for wound healing and repair. We employed an oligonucleotide microarray technique to gain further insight into the molecular mechanisms underlying the proangiogenic potential of human PMN. In addition to 18 known angiogenesis-relevant genes, we detected the expression of 10 novel genes, namely midkine, erb-B2, ets-1, transforming growth factor receptor-beta(2) and -beta(3), thrombospondin, tissue inhibitor of metalloproteinase 2, ephrin A2, ephrin B2 and restin in human PMN freshly isolated from the circulation. Gene expression was confi rmed by the RT-PCR technique. In vivo evidence for the role of PMN in neovascularization was provided by studying neovascularization in a skin model of wound healing using CD18-deficient mice which lack PMN infi ltration to sites of lesion. In CD18-deficient animals, neo- vascularization was found to be signifi cantly compromised when compared with wild- type control animals which showed profound neovascularization within the granulation tissue during the wound healing process. Thus, PMN infiltration seems to facilitate inflammation mediated angiogenesis which may be a consequence of the broad spectrum of proangiogenic factors expressed by these cells. Copyright (c) 2006 S. Karger AG, Basel

    Finding one's way in proteomics: a protein species nomenclature

    Get PDF
    Our knowledge of proteins has greatly improved in recent years, driven by new technologies in the fields of molecular biology and proteome research. It has become clear that from a single gene not only one single gene product but many different ones - termed protein species - are generated, all of which may be associated with different functions. Nonetheless, an unambiguous nomenclature for describing individual protein species is still lacking. With the present paper we therefore propose a systematic nomenclature for the comprehensive description of protein species. The protein species nomenclature is flexible and adaptable to every level of knowledge and of experimental data in accordance with the exact chemical composition of individual protein species. As a minimum description the entry name (gene name + species according to the UniProt knowledgebase) can be used, if no analytical data about the target protein species are available

    Structural and kinetic characterization of DUSP5 with a Di-phosphorylated tripeptide substrate from the ERK activation loop

    Get PDF
    Introduction: Dual specific phosphatases (DUSPs) are mitogen-activated protein kinase (MAPK) regulators, which also serve as drug targets for treating various vascular diseases. Previously, we have presented mechanistic characterizations of DUSP5 and its interaction with pERK, proposing a dual active site.Methods: Herein, we characterize the interactions between the DUSP5 phosphatase domain and the pT-E-pY activation loop of ERK2, with specific active site assignments. We also report the full NMR chemical shift assignments of DUSP5 that now enable chemical shift perturbation and dynamics studies.Results and Discussion: Both phosphates of the pT-E-pY tripeptide are dephosphorylated, based on 31P NMR; but, steady state kinetic studies of the tripeptide both as a substrate and as an inhibitor indicate a preference for binding and dephosphorylation of the phospho-tyrosine before the phospho-threonine. Catalytic efficiency (kcat/Km) is 3.7 M−1S−1 for T-E-pY vs 1.3 M−1S−1 for pT-E-Y, although the diphosphorylated peptide (pT-E-pY) is a better substrate than both, with kcat/Km = 18.2 M−1S−1 . Steady state inhibition studies with the pNPP substrate yields Kis values for the peptide inhibitors of: 15.82 mM (pT-E-Y), 4.932 mM (T-E-pY), 1.672 mM (pT-E-pY). Steady state inhibition studies with pNPP substrate and with vanadate or phosphate inhibitors indicated competitive inhibition with Kis values of 0.0006122 mM (sodium vanadate) and 17.32 mM (sodium phosphate), similar to other Protein Tyrosine Phosphatases with an active site cysteine nucleophile that go through a five-coordinate high energy transition state or intermediate. Molecular dynamics (MD) studies confirm preferential binding of the diphosphorylated peptide, but with preference for binding the pY over the pT reside in the catalytic site proximal to the Cys263 nucleophile. Based on MD, the monophosphorylated peptide binds tighter if phosphorylated on the Tyr vs the Thr. And, if the starting pose of the docked diphosphorylated peptide has pT in the catalytic site, it will adjust to have the pY in the catalytic site, suggesting a dynamic shifting of the peptide orientation. 2D 1H-15N HSQC chemical shift perturbation studies confirm that DUSP5 with tripeptide bound is in a dynamic state, with extensive exchange broadening observed—especially of catalytic site residues. The availability of NMR chemical shift assignments enables additional future studies of DUSP5 binding to the ERK2 diphosphorylated activation loop.Summary: These studies indicate a preference for pY before pT binding, but with ability to bind and dephosphorylate both residues, and with a dynamic active site pocket that accommodates multiple tripeptide orientations

    Twist1 Directly Regulates Genes That Promote Cell Proliferation and Migration in Developing Heart Valves

    Get PDF
    Twist1, a basic helix-loop-helix transcription factor, is expressed in mesenchymal precursor populations during embryogenesis and in metastatic cancer cells. In the developing heart, Twist1 is highly expressed in endocardial cushion (ECC) valve mesenchymal cells and is down regulated during valve differentiation and remodeling. Previous studies demonstrated that Twist1 promotes cell proliferation, migration, and expression of primitive extracellular matrix (ECM) molecules in ECC mesenchymal cells. Furthermore, Twist1 expression is induced in human pediatric and adult diseased heart valves. However, the Twist1 downstream target genes that mediate increased cell proliferation and migration during early heart valve development remain largely unknown. Candidate gene and global gene profiling approaches were used to identify transcriptional targets of Twist1 during heart valve development. Candidate target genes were analyzed for evolutionarily conserved regions (ECRs) containing E-box consensus sequences that are potential Twist1 binding sites. ECRs containing conserved E-box sequences were identified for Twist1 responsive genes Tbx20, Cdh11, Sema3C, Rab39b, and Gadd45a. Twist1 binding to these sequences in vivo was determined by chromatin immunoprecipitation (ChIP) assays, and binding was detected in ECCs but not late stage remodeling valves. In addition identified Twist1 target genes are highly expressed in ECCs and have reduced expression during heart valve remodeling in vivo, which is consistent with the expression pattern of Twist1. Together these analyses identify multiple new genes involved in cell proliferation and migration that are differentially expressed in the developing heart valves, are responsive to Twist1 transcriptional function, and contain Twist1-responsive regulatory sequences

    Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma

    Get PDF
    Promoter region hyermethylation and transcriptional silencing is a frequent cause of tumour suppressor gene (TSG) inactivation in many types of human cancers. Functional epigenetic studies, in which gene expression is induced by treatment with demethylating agents, may identify novel genes with tumour-specific methylation. We used high-density gene expression microarrays in a functional epigenetic study of 11 renal cell carcinoma (RCC) cell lines. Twenty-eight genes were then selected for analysis of promoter methylation status in cell lines and primary RCC. Eight genes (BNC1, PDLIM4, RPRM, CST6, SFRP1, GREM1, COL14A1 and COL15A1) showed frequent (30% of RCC tested) tumour-specific promoter region methylation. Hypermethylation was associated with transcriptional silencing. Re-expression of BNC1, CST6, RPRM and SFRP1 suppressed the growth of RCC cell lines and RNA interference knock-down of BNC1, SFRP1 and COL14A1 increased the growth of RCC cell lines. Methylation of BNC1 or COL14A1 was associated with a poorer prognosis independent of tumour size, stage or grade. The identification of these epigenetically inactivated candidate RCC TSGs can provide insights into renal tumourigenesis and a basis for developing novel therapies and biomarkers for prognosis and detection. © 2010 Macmillan Publishers Limited.Published versio
    corecore