63 research outputs found

    Investigation of the quasi-free domain in deuteron-deuteron break-up using spin observables

    Get PDF
    Precision measurements of vector and tensor analyzing powers of the 2H(d, dp)n break-up process for configurations in the vicinity of the quasi-free scattering regime with the neutron as spectator are presented. These measurements are performed with a polarized deuteron-beam with an energy of 65MeV/nucleon impinging on a liquid-deuterium target. The experiment was conducted at the AGOR facility at KVI using the BINA 4π-detection system. Events for which the final-state deuteron and proton are coplanar have been analyzed and the data have been sorted for various momenta of the missing neutron. In the limit of vanishing neutron momentum and at large deuteron-proton momentum transfer, the data agree well with the measured and theoretically predicted spin observables of the elastic deuteronproton scattering process. The agreement deteriorates rapidly with increasing neutron momentum and/or decreasing momentum transfer from the deuteron beam to the outgoing proton. This study reveals the presence of a significant contribution of final-state interactions even at very small neutron momenta

    Comprehensive measurements of cross sections and spin observables of the three-body break-up channel in deuteron-deuteron scattering at 65 MeV/nucleon

    Get PDF
    Detailed measurements of five-fold differential cross sections and a rich set of vector and tensor analyzing powers of the 2H(d; dp)n break-up process using polarized deuteron-beam energy of 65 MeV/nucleon with a liquid-deuterium target are presented. The experiment was conducted at the AGOR facility at KVI using the BINA 4Pi-detection system. We discuss the analysis procedure including a thorough study of the systematic uncertainties. The results can be used to examine upcoming state-of-the-art calculations in the four-nucleon scattering domain, and will, thereby, provide further insights into the dynamics of three- and four-nucleon forces in few-nucleon systems. The results of coplanar configurations are compared with the results of recent theoretical calculations based on the Single-Scattering Approximation (SSA). Through these comparisons, the validity of SSA approximation is investigated in the Quasi-Free (QF) region.Comment: 33 pages, 30 figure

    Measurements of scattering observables for the pdpd break-up reaction

    Get PDF
    High-precision measurements of the scattering observables such as cross sections and analyzing powers for the proton-deuteron elastic and break-up reactions have been performed at KVI in the last two decades and elsewhere to investigate various aspects of the three-nucleon force (3NF) effects simultaneously. In 2006 an experiment was performed to study these effects in p+d\vec{p}+d break-up reaction at 135 MeV with the detection system, Big Instrument for Nuclear polarization Analysis, BINA. BINA covers almost the entire kinematical phase space of the break-up reaction. The results are interpreted with the help of state-of-the-art Faddeev calculations and are partly presented in this contribution.Comment: Proceedings of 19th International IUPAP Conference on Few-Body Problems in Physics, Bonn University, 31.08 - 05.09.2009, Bonn, GERMAN

    Analyzing powers at low nucleon–nucleon relative energies in proton–deuteron breakup reaction

    Get PDF
    Vector analyzing powers for the d(p,pp)nd(\overset{\mapsto }{p},pp)n reaction have been measured at KVI for different kinematical configurations using a polarized proton beam with an energy of 190 MeV. We compared our data with different theoretical calculations at extremely low relative energies of the proton–proton and proton–neutron systems in the final state. For the proton–neutron case, we used the information of the two detected protons in the final state in which one of them scattered to an angle smaller than 40^{\circ} and the other one to an angle larger than 100^{\circ} in the laboratory frame. We extrapolated our measurements towards a kinematical configuration to a vanishing relative energy. Our results show that none of the theoretical models presented here is able to reproduce experimental data for the proton–proton case at very low relative energies. For the proton–neutron case, we were not able to provide a reliable extrapolation to small relative energies of less than 1 MeV. Present results are the basis for future investigations of spin-isospin dependencies in the nuclear many-body force

    Cross Sections of the Deuteron-Proton Breakup at 130 MeV:A Probe of Three-Nucleon System Dynamics

    Get PDF
    Three-nucleon system dynamics can be investigated quantitatively by comparing observables calculated with the use of Faddeev equations with results of precise measurements. Proper description of the experimental data can be achieved only if the dynamical models include, in addition to the nucleon-nucleon interaction, subtle effects of suppressed degrees of freedom, effectively introduced by means of genuine three-nucleon forces. A large set of high precision, exclusive cross-section data for the (1)H(d,pp)n breakup reaction at 130 MeV contributes significantly to constrain the physical assumptions underlying the theoretical interaction models. Comparison of nearly 1,800 cross section data points with the predictions using nuclear interactions generated in various ways, allowed to establish importance of including both, the three-nucleon and the Coulomb forces to significantly improve the description of the whole data set

    Precision measurements of differential cross sections and analyzing powers in elastic deuteron-deuteron scattering at 65 MeV/nucleon

    Get PDF
    We present measurements of differential cross sections and analyzing powers for the elastic 2H(d, d)d scat-tering process. The data were obtained using a 130 MeV polarized deuteron beam. Cross sections and spin observ-ables of the elastic scattering process were measured at the AGOR facility at KVI using two independent setups, namely BINA and BBS. The data harvest at setups are in excellent agreement with each other and allowed us to carry out a thor-ough systematic analysis to provide the most accurate data in elastic deuteron-deuteron scattering at intermediate energies. The results can be used to confront upcoming state-of-the-art calculations in the four-nucleon scattering domain, and will, thereby, provide further insights in the dynamics of three-and four-nucleon forces in few-nucleon systems

    A comprehensive analysis of differential cross sections and analyzing powers in the proton–deuteron break-up channel at 135 MeV

    Get PDF
    A selection of measured cross sections and vector analyzing powers, A(x) and A(y), are presented for the (p) over right arrowd break-up reaction. The data are taken with a polarized proton beam with a kinetic energy of 135 MeV using the Big Instrument for Nuclear-polarization Analysis (BINA) at KVI, the Netherlands. With this setup, A(x) is extracted for the first time for a large range of energies as well as polar and azimuthal angles of the two outgoing protons. For most of the configurations, the results at small and large relative azimuthal angles differ in behavior when comparing experimental data with the theoretical calculations. We also performed a more global comparison of our data with theoretical calculations. The cross-section results show huge values of chi(2)/d.o.f.. The absolute values of chi(2)/d.o.f. for the components of vector analyzing powers, A(x) and A(y), are smaller than the ones for the cross section, partly due to larger uncertainties for these observables. However, also for these observables no satisfactory agreement is found for all angular combinations. This implies that the present models of a three-nucleon force are not able to provide a satisfactory description of experimental data

    Quasi-free limit in the deuteron-deuteron three-body break-up process

    Get PDF
    Detailed measurements of vector and tensor analyzing powers of the 2H(~d, dp)n breakup process are presented. The data were obtained using a polarized deuteron-beam with an energy of 65 MeV/nucleon impinging on a liquid-deuterium target. The experiment was conducted at the AGOR facility at KVI using the BINA 4 -detection system. The focus of this contribution is to analyze data of the dd scattering process in the regime at which the neutron acts as a spectator, which we refer to as the quasi-free (QF) limit. To achieve this, events for which the final-state deuteron and proton are coplanar have been analyzed and the data have been sorted for various reconstructed momenta of the missing neutron. In the limit of vanishing neutron momentum and at small deuteron-proton momentum transfer, the data match very well with measured and predicted spin observables of the elastic deuteron-proton scattering process. The agreement deteriorates rapidly with increasing neutron momentum and deuteron-proton momentum transfer. The results of coplanar configurations in four-body phase space are compared with the results of recent available theoretical calculations based on the Single-Scattering Approximation

    Elastic proton-deuteron scattering at intermediate energies

    Full text link
    Observables in elastic proton-deuteron scattering are sensitive probes of the nucleon-nucleon interaction and three-nucleon force effects. The present experimental data base for this reaction is large, but contains a large discrepancy between data sets for the differential cross section taken at 135 MeV/nucleon by two experimental research groups. This paper reviews the background of this problem and presents new data taken at KVI. Differential cross sections and analyzing powers for the 2H(p,d)p^{2}{\rm H}(\vec p,d){p} and H(d,d)p{\rm H}(\vec d,d){p} reactions at 135 MeV/nucleon and 65 MeV/nucleon, respectively, have been measured. The data differ significantly from previous measurements and consistently follow the energy dependence as expected from an interpolation of published data taken over a large range at intermediate energies.Comment: 5 pages, 4 figures, submitted to PR
    corecore