139 research outputs found
Data-Driven Analysis of EEG Reveals Concomitant Superficial Sleep During Deep Sleep in Insomnia Disorder
Study Objectives: The subjective suffering of people with Insomnia Disorder (ID) is insufficiently accounted for by traditional sleep classification, which presumes a strict sequential occurrence of global brain states. Recent studies challenged this presumption by showing concurrent sleep- and wake-type neuronal activity. We hypothesized enhanced co-occurrence of diverging EEG vigilance signatures during sleep in ID. Methods: Electroencephalography (EEG) in 55 cases with ID and 64 controls without sleep complaints was subjected to a Latent Dirichlet Allocation topic model describing each 30 s epoch as a mixture of six vigilance states called Topics (T), ranked from N3-related T1 and T2 to wakefulness-related T6. For each stable epoch we determined topic dominance (the probability of the most likely topic), topic co-occurrence (the probability of the remaining topics), and epoch-to-epoch transition probabilities. Results: In stable epochs where the N1-related T4 was dominant, T4 was more dominant in ID than in controls, and patients showed an almost doubled co-occurrence of T4 during epochs where the N3-related T1 was dominant. Furthermore, patients had a higher probability of switching from T1- to T4-dominated epochs, at the cost of switching to N3-related T2-dominated epochs, and a higher probability of switching from N2-related T3- to wakefulness-related T6-dominated epochs. Conclusion: Even during their deepest sleep, the EEG of people with ID express more N1-related vigilance signatures than good sleepers do. People with ID are moreover more likely to switch from deep to light sleep and from N2 sleep to wakefulness. The findings suggest that hyperarousal never rests in ID
Profiling of polar ionogenic metabolites in Polish wines by capillary electrophoresis-mass spectrometry
The composition of wine is determined by a complex interaction between environmental factors, genetic factors (i.e., grape varieties), and winemaking practices (including technology and storage). Metabolomics using NMR spectroscopy, GC-MS, and/or LC-MS has shown to be a useful approach for assessing the origin, authenticity, and quality of various wines. Nonetheless, the use of additional analytical techniques with complementary separation mechanisms may aid in the deeper understanding of wine's metabolic processes. In this study, we demonstrate that CE-MS is a very suitable approach for the efficient profiling of polar ionogenic metabolites in wines. Without using any sample preparation or derivatization, wine was analyzed using a 10-min CE-MS workflow with interday RSD values for 31 polar and charged metabolites below 3.8% and 23% for migration times and peak areas, respectively. The utility of this workflow for the global profiling of polar ionogenic metabolites in wine was evaluated by analyzing different cool-climate Polish wine samples.Analytical BioScience
Capillary electrophoresis-mass spectrometry analysis of trehalose-6-phosphate in Arabidopsis thaliana seedlings
Trehalose-6-phosphate (T6P) is an intermediate in the plant metabolic pathway that results in trehalose production. T6P has been shown to inhibit the sucrose nonfermenting-1-related protein kinase 1, which is a major regulator of metabolism. The quantitation of T6P has proven difficult due to the complexity of the plant matrix and the low abundance of T6P in plant tissues. The aim of this work was to develop a quantitation method for T6P present in Arabidopsis tissues, with capillary electrophoresis (CE) coupled to electrospray ionization-mass spectrometry (MS) with a sheath liquid (SL) interface. The CE-MS method was first optimized with respect to T6P signal intensity and separation of isomers by studying the composition of the background electrolyte (BGE) and SL. The use of triethylamine (TEA) in the BGE was favorable, providing separation of T6P from sucrose-6-phosphate and minimizing ionization suppression. Replacing ammonium acetate with TEA enhanced T6P signal intensities more than four times. The optimized method allowed quantification of T6P in plant extracts with good linearity (r2 > 0.99) within a biologically relevant concentration range. The limit of quantification was 80 nM in Arabidopsis extracts, corresponding to 33 pmol/g plant fresh weight. The CE-MS method was applied to the determination of T6P in seedlings from wild type (WT) Arabidopsis and mutants lacking the trehalase AtTRE1, tre1-1, challenged with trehalose or sorbitol. T6P accumulation in tre1-1 plants grown on sorbitol was about twice the level of T6P found in WT. CE-MS is shown to be a fast and reliable technique to analyze phosphodisaccharides for seedling extracts. The low sample volume requirement of CE and its direct MS coupling makes it an attractive alternative for anion-exchange liquid chromatography–MS
EEG Microstates Indicate Heightened Somatic Awareness in Insomnia: Toward Objective Assessment of Subjective Mental Content
People with Insomnia Disorder (ID) not only experience abundant nocturnal mentation, but also report altered spontaneous mental content during daytime wakefulness, such as an increase in bodily experiences (heightened somatic awareness). Previous studies have shown that resting-state EEG can be temporally partitioned into quasi-stable microstates, and that these microstates form a small number of canonical classes that are consistent across people. Furthermore, the microstate classes have been associated with individual differences in resting mental content including somatic awareness. To address the hypothesis that altered resting mental content in ID would be reflected in an altered representation of the corresponding EEG microstates, we analyzed resting-state high-density EEG of 32 people with ID and 32 age- and sex-matched controls assessed during 5-min eyes-closed wakefulness. Using data-driven topographical k-means clustering, we found that 5 microstate classes optimally explained the EEG scalp voltage map sequences across participants. For each microstate class, 3 dynamic features were obtained: mean duration, frequency of occurrence, and proportional coverage time. People with ID had a shorter mean duration of class C microstates, and more frequent occurrence of class D microstates. The finding is consistent with previously established associations of these microstate properties with somatic awareness, and increased somatic awareness in ID. EEG microstate assessment could provide objective markers of subjective experience dimensions in studies on consciousness during the transition between wake and sleep, when self-report is not possible because it would interfere with the very process under study. Addressing somatic awareness may benefit psychotherapeutic treatment of insomnia
CE-MS metabolic profiling of volume-restricted plasma samples from an acute mouse model for epileptic seizures to discover potentially involved metabolomic features
Currently, a high variety of analytical techniques to perform metabolomics is available. One of these techniques is capillary electrophoresis coupled to mass spectrometry (CE-MS), which has emerged as a rather strong analytical technique for profiling polar and charged compounds. This work aims to discover with CE-MS potential metabolic consequences of evoked seizures in plasma by using a 6Hz acute corneal seizure mouse model. CE-MS is an appealing technique because of its capability to handle very small sample volumes, such as the 10 mu L plasma samples obtained using capillary microsampling in this study. After liquid-liquid extraction, the samples were analyzed with CE-MS using low-pH separation conditions, followed by data analysis and biomarker identification. Both electrically induced seizures showed decreased values of methionine, lysine, glycine, phenylalanine, citrulline, 3-methyladenine and histidine in mice plasma. However, a second provoked seizure, 13 days later, showed a less pronounced decrease of the mean concentrations of these plasma metabolites, demonstrated by higher fold change ratios. Other obtained markers that can be related to seizure activities based on literature data, are isoleucine, serine, proline, tryptophan, alanine, arginine, valine and asparagine. Most amino acids showed relatively stable plasma concentrations between the basal levels (Time point 1) and after the 13-day wash-out period (Time point 3), which suggests its effectiveness. Overall, this work clearly demonstrated the possibility of profiling metabolite consequences related to seizure activities of an intrinsically low amount of body fluid using CE-MS. It would be useful to investigate and validate, in the future, the known and unknown metabolites in different animal models as well as in humans.Analytical BioScience
Go-stimuli proportion influences response strategy in a sustained attention to response task
The sustained attention to response task (SART)
usefulness as a measure of sustained attention has been questioned. The SART may instead be a better measure of other psychological processes and could prove useful in understanding some real-world behaviours. Thirty participants completed four Go/No-Go response tasks much like the SART, with Go-stimuli proportions of .50, .65, .80 and .95. As Go-stimuli proportion increased, reaction times decreased while both commission errors and self-reported task-related thoughts increased. Performance measures were associated with task-related thoughts but not taskunrelated thoughts. Instead of faster reaction times and increased commission errors being due to absentmindedness or perceptual decoupling from the task, the results suggested participants made use of two competing response strategies, in line with a response strategy or response inhibition perspective of SART performance. Interestingly, performance measures changed in a nonlinear manner, despite the linear Go proportion increase. A threshold may exist where the prepotent motor response becomes more pronounced, leading to the disproportionate increase in response speed and commission errors. This research has implications for researchers looking to employ the SAR
Event-Related Potential Correlates of Performance-Monitoring in a Lateralized Time-Estimation Task
Performance-monitoring as a key function of cognitive control covers a wide range of diverse processes to enable goal directed behavior and to avoid maladjustments. Several event-related brain potentials (ERP) are associated with performance-monitoring, but their conceptual background differs. For example, the feedback-related negativity (FRN) is associated with unexpected performance feedback and might serve as a teaching signal for adaptational processes, whereas the error-related negativity (ERN) is associated with error commission and subsequent behavioral adaptation. The N2 is visible in the EEG when the participant successfully inhibits a response following a cue and thereby adapts to a given stop-signal. Here, we present an innovative paradigm to concurrently study these different performance-monitoring-related ERPs. In 24 participants a tactile time-estimation task interspersed with infrequent stop-signal trials reliably elicited all three ERPs. Sensory input and motor output were completely lateralized, in order to estimate any hemispheric processing preferences for the different aspects of performance monitoring associated with these ERPs. In accordance with the literature our data suggest augmented inhibitory capabilities in the right hemisphere given that stop-trial performance was significantly better with left- as compared to right-hand stop-signals. In line with this, the N2 scalp distribution was generally shifted to the right in addition to an ipsilateral shift in relation to the response hand. Other than that, task lateralization affected neither behavior related to error and feedback processing nor ERN or FRN. Comparing the ERP topographies using the Global Map Dissimilarity index, a large topographic overlap was found between all considered components.With an evenly distributed set of trials and a split-half reliability for all ERP components ≥.85 the task is well suited to efficiently study N2, ERN, and FRN concurrently which might prove useful for group comparisons, especially in clinical populations
On the Role of the Striatum in Response Inhibition
BACKGROUND: Stopping a manual response requires suppression of the primary motor cortex (M1) and has been linked to activation of the striatum. Here, we test three hypotheses regarding the role of the striatum in stopping: striatum activation during successful stopping may reflect suppression of M1, anticipation of a stop-signal occurring, or a slower response build-up. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-four healthy volunteers underwent functional magnetic resonance imaging (fMRI) while performing a stop-signal paradigm, in which anticipation of stopping was manipulated using a visual cue indicating stop-signal probability, with their right hand. We observed activation of the striatum and deactivation of left M1 during successful versus unsuccessful stopping. In addition, striatum activation was proportional to the degree of left M1 deactivation during successful stopping, implicating the striatum in response suppression. Furthermore, striatum activation increased as a function of stop-signal probability and was to linked to activation in the supplementary motor complex (SMC) and right inferior frontal cortex (rIFC) during successful stopping, suggesting a role in anticipation of stopping. Finally, trial-to-trial variations in response time did not affect striatum activation. CONCLUSIONS/SIGNIFICANCE: The results identify the striatum as a critical node in the neural network associated with stopping motor responses. As striatum activation was related to both suppression of M1 and anticipation of a stop-signal occurring, these findings suggest that the striatum is involved in proactive inhibitory control over M1, most likely in interaction with SMC and rIFC
- …