8 research outputs found

    Power system security enhancement through direct non-disruptive load control

    Get PDF
    The transition to a competitive market structure raises significant concerns regarding reliability of the power grid. A need to build tools for security assessment that produce operating limit boundaries for both static and dynamic contingencies is recognized. Besides, an increase in overall uncertainty in operating conditions makes corrective actions at times ineffective leaving the system vulnerable to instability. The tools that are in place for stability enhancement are mostly corrective and suffer from lack of robustness to operating condition changes. They often pose serious coordination challenges. With deregulation, there have also been ownership and responsibility issues associated with stability controls. However, the changing utility business model and the developments in enabling technologies such as two-way communication, metering, and control open up several new possibilities for power system security enhancement. This research proposes preventive modulation of selected loads through direct control for power system security enhancement. Two main contributions of this research are the following: development of an analysis framework and two conceptually different analysis approaches for load modulation to enhance oscillatory stability, and the development and study of algorithms for real-time modulation of thermostatic loads.;The underlying analysis framework is based on the Structured Singular Value (SSV or mu) theory. Based on the above framework, two fundamentally different approaches towards analysis of the amount of load modulation for desired stability performance have been developed. Both the approaches have been tested on two different test systems: CIGRE Nordic test system and an equivalent of the Western Electric Coordinating Council test system.;This research also develops algorithms for real-time modulation of thermostatic loads that use the results of the analysis. In line with some recent load management programs executed by utilities, two different algorithms based on dynamic programming are proposed for air-conditioner loads, while a decision-tree based algorithm is proposed for water-heater loads. An optimization framework has been developed employing the above algorithms. Monte Carlo simulations have been performed using this framework with the objective of studying the impact of different parameters and constraints on the effectiveness as well as the effect of control.;The conclusions drawn from this research strongly advocate direct load control for stability enhancement from the perspectives of robustness and coordination, as well as economic viability and the developments towards availability of the institutional framework for load participation in providing system reliability services

    Habituation based synaptic plasticity and organismic learning in a quantum perovskite

    Get PDF
    A central characteristic of living beings is the ability to learn from and respond to their environment leading to habit formation and decision making. This behavior, known as habituation, is universal among all forms of life with a central nervous system, and is also observed in single-cell organisms that do not possess a brain. Here, we report the discovery of habituation-based plasticity utilizing a perovskite quantum system by dynamical modulation of electron localization. Microscopic mechanisms and pathways that enable this organismic collective charge-lattice interaction are elucidated by first-principles theory, synchrotron investigations, ab initio molecular dynamics simulations, and in situ environmental breathing studies. We implement a learning algorithm inspired by the conductance relaxation behavior of perovskites that naturally incorporates habituation, and demonstrate learning to forget: A key feature of animal and human brains. Incorporating this elementary skill in learning boosts the capability of neural computing in a sequential, dynamic environment.United States. Army Research Office (Grant W911NF-16-1-0289)United States. Air Force Office of Scientific Research (Grant FA9550-16-1-0159)United States. Army Research Office (Grant W911NF-16-1-0042

    Study on the impact of tsunami on shallow groundwater from Portnova to Pumpuhar, using geoelectrical technique - south east coast of India

    No full text
    121-131Andaman – Sumatra tsunami has caused distress to humanity and natural environment. Damage on the natural system has to be assessed scientifically for sustainable development. Geoelectrical studies are the realistic approach for comparing behavior of aquifer before and after tsunami. A study has been conducted on a shallow aquifer in the coastal region to assess salinity variation due to the impact of tsunami. Significant variations were observed in apparent resistivity values, due to percolation of sea water into shallow aquifers. Transformation of curve types has been noted in few regions in various aquifer depths. Changes in the formation resistivity and formation factor have also been noticed, which indicate salinity increase in aquifers. Geoelectrical cross section of the aquifer shows that perched water lens identified has also been affected by tsunami stress

    Strongly correlated perovskite lithium ion shuttles

    No full text
    © 2018 National Academy of Sciences. All rights reserved. Solid-state ion shuttles are of broad interest in electrochemical devices, nonvolatile memory, neuromorphic computing, and bio-mimicry utilizing synthetic membranes. Traditional design approaches are primarily based on substitutional doping of dissimilar valent cations in a solid lattice, which has inherent limits on dopant concentration and thereby ionic conductivity. Here, we demonstrate perovskite nickelates as Li-ion shuttles with simultaneous suppression of electronic transport via Mott transition. Electrochemically lithiated SmNiO3 (Li-SNO) contains a large amount of mobile Li+ located in interstitial sites of the perovskite approaching one dopant ion per unit cell. A significant lattice expansion associated with interstitial doping allows for fast Li+ conduction with reduced activation energy. We further present a generalization of this approach with results on other rare-earth perovskite nickelates as well as dopants such as Na+. The results highlight the potential of quantum materials and emergent physics in design of ion conductors
    corecore