1,461 research outputs found

    Computation of pressures on under-water-bodies

    Get PDF
    An existing code in the division is utilized to obtain pressures on under-water-bodies supplied by the User agency (Naval Science and Technology, Vishakapatnam - 6

    A neural network architecture for implementation of expert systems for real time monitoring

    Get PDF
    Since neural networks have the advantages of massive parallelism and simple architecture, they are good tools for implementing real time expert systems. In a rule based expert system, the antecedents of rules are in the conjunctive or disjunctive form. We constructed a multilayer feedforward type network in which neurons represent AND or OR operations of rules. Further, we developed a translator which can automatically map a given rule base into the network. Also, we proposed a new and powerful yet flexible architecture that combines the advantages of both fuzzy expert systems and neural networks. This architecture uses the fuzzy logic concepts to separate input data domains into several smaller and overlapped regions. Rule-based expert systems for time critical applications using neural networks, the automated implementation of rule-based expert systems with neural nets, and fuzzy expert systems vs. neural nets are covered

    A neuro-fuzzy architecture for real-time applications

    Get PDF
    Neural networks and fuzzy expert systems perform the same task of functional mapping using entirely different approaches. Each approach has certain unique features. The ability to learn specific input-output mappings from large input/output data possibly corrupted by noise and the ability to adapt or continue learning are some important features of neural networks. Fuzzy expert systems are known for their ability to deal with fuzzy information and incomplete/imprecise data in a structured, logical way. Since both of these techniques implement the same task (that of functional mapping--we regard 'inferencing' as one specific category under this class), a fusion of the two concepts that retains their unique features while overcoming their individual drawbacks will have excellent applications in the real world. In this paper, we arrive at a new architecture by fusing the two concepts. The architecture has the trainability/adaptibility (based on input/output observations) property of the neural networks and the architectural features that are unique to fuzzy expert systems. It also does not require specific information such as fuzzy rules, defuzzification procedure used, etc., though any such information can be integrated into the architecture. We show that this architecture can provide better performance than is possible from a single two or three layer feedforward neural network. Further, we show that this new architecture can be used as an efficient vehicle for hardware implementation of complex fuzzy expert systems for real-time applications. A numerical example is provided to show the potential of this approach

    A Classification and Survey of Computer System Performance Evaluation Techniques

    Get PDF
    Classification and survey of computer system performance evaluation technique

    Automated implementation of rule-based expert systems with neural networks for time-critical applications

    Get PDF
    In fault diagnosis, control and real-time monitoring, both timing and accuracy are critical for operators or machines to reach proper solutions or appropriate actions. Expert systems are becoming more popular in the manufacturing community for dealing with such problems. In recent years, neural networks have revived and their applications have spread to many areas of science and engineering. A method of using neural networks to implement rule-based expert systems for time-critical applications is discussed here. This method can convert a given rule-based system into a neural network with fixed weights and thresholds. The rules governing the translation are presented along with some examples. We also present the results of automated machine implementation of such networks from the given rule-base. This significantly simplifies the translation process to neural network expert systems from conventional rule-based systems. Results comparing the performance of the proposed approach based on neural networks vs. the classical approach are given. The possibility of very large scale integration (VLSI) realization of such neural network expert systems is also discussed

    A new approach for designing self-organizing systems and application to adaptive control

    Get PDF
    There is tremendous interest in the design of intelligent machines capable of autonomous learning and skillful performance under complex environments. A major task in designing such systems is to make the system plastic and adaptive when presented with new and useful information and stable in response to irrelevant events. A great body of knowledge, based on neuro-physiological concepts, has evolved as a possible solution to this problem. Adaptive resonance theory (ART) is a classical example under this category. The system dynamics of an ART network is described by a set of differential equations with nonlinear functions. An approach for designing self-organizing networks characterized by nonlinear differential equations is proposed

    INVESTIGATION ON ENERGY BASED DATA GATHERING APPROACH FOR WSN

    Get PDF
    Wireless Sensor Networks plays a vital role in all emerging areas of Wireless Platforms like Interne of Things (IoT), WiFi, WiMAX etc. Sensor nodes are communicated with or without the presence of administrator. Data gathering is a major issue in WSN which influences the throughput, energy and data delivery. In previous research, there was not taken efforts to focus on balanced data gathering.  In this research, we propose Reliable Energy Efficient Data Gathering Approach (REEDGA) to balance data gathering and overhead. To achieve this, proposed work consists of three phases. In first phase, estimation of information gathering is implemented through stable paths. Stable paths are found based on link cost. In second phase, data gathering phase is initialized to save energy in the presence of mobile sensor nodes. Overhead is kept low while keeping round trip time of gathered data. From the analytical simulation using NS2, the proposed approach achieves better performance in terms of data delivery rate, data gathering rate, throughput, delay, link availability and control overhead

    Pedogenic characteristics of soil in Melur block, Madurai district, Tamil Nadu in India: A case study

    Get PDF
    Soil is an important source of human life and agricultural production. Studying on the pedon and its site characteristics pave the way for understanding the nature of soils and its utility. A study on pedological characterization of soils in Melur block, Madurai District (Tamil Nadu), was carried out during 2019-2020 using grid sampling with village map/cadastral maps. Soil mapping unit-based soil samples were collected in Chunampoor, Thuvarangulam, Poonjuthi and Veppapadupu and pedons were characterized as per the standard procedure. The results showed that soils were moderately deep to very deep in nature, ranging from 2.5 YR  3/6 to 10YR 4/6. The soil texture varied from sandy clay loam to sandy clay with weak to moderate sub-angular blocky structure. The consistency of soil varied from slightly hard to very hard when dry, very friable to firm when moist, slightly sticky to very sticky and slightly plastic to very plastic in wet condition. The crops viz., paddy, sugarcane, banana, groundnut and vegetables were very suitable for such type of soil of the Madurai district

    Tight Cell Probe Bounds for Succinct Boolean Matrix-Vector Multiplication

    Full text link
    The conjectured hardness of Boolean matrix-vector multiplication has been used with great success to prove conditional lower bounds for numerous important data structure problems, see Henzinger et al. [STOC'15]. In recent work, Larsen and Williams [SODA'17] attacked the problem from the upper bound side and gave a surprising cell probe data structure (that is, we only charge for memory accesses, while computation is free). Their cell probe data structure answers queries in O~(n7/4)\tilde{O}(n^{7/4}) time and is succinct in the sense that it stores the input matrix in read-only memory, plus an additional O~(n7/4)\tilde{O}(n^{7/4}) bits on the side. In this paper, we essentially settle the cell probe complexity of succinct Boolean matrix-vector multiplication. We present a new cell probe data structure with query time O~(n3/2)\tilde{O}(n^{3/2}) storing just O~(n3/2)\tilde{O}(n^{3/2}) bits on the side. We then complement our data structure with a lower bound showing that any data structure storing rr bits on the side, with n<r<n2n < r < n^2 must have query time tt satisfying tr=Ω~(n3)t r = \tilde{\Omega}(n^3). For rnr \leq n, any data structure must have t=Ω~(n2)t = \tilde{\Omega}(n^2). Since lower bounds in the cell probe model also apply to classic word-RAM data structures, the lower bounds naturally carry over. We also prove similar lower bounds for matrix-vector multiplication over F2\mathbb{F}_2

    EBF1-deficient bone marrow stroma elicits persistent changes in HSC potential

    No full text
    Crosstalk between mesenchymal stromal cells (MSCs) and hematopoietic stem cells (HSCs) is essential for hematopoietic homeostasis and lineage output. Here, we investigate how transcriptional changes in bone marrow (BM) MSCs result in long-lasting effects on HSCs. Single-cell analysis of Cxcl12-abundant reticular (CAR) cells and PDGFRα+Sca1+ (PαS) cells revealed an extensive cellular heterogeneity but uniform expression of the transcription factor gene Ebf1. Conditional deletion of Ebf1 in these MSCs altered their cellular composition, chromatin structure and gene expression profiles, including the reduced expression of adhesion-related genes. Functionally, the stromal-specific Ebf1 inactivation results in impaired adhesion of HSCs, leading to reduced quiescence and diminished myeloid output. Most notably, HSCs residing in the Ebf1-deficient niche underwent changes in their cellular composition and chromatin structure that persist in serial transplantations. Thus, genetic alterations in the BM niche lead to long-term functional changes of HSCs
    corecore