2,729 research outputs found

    Semiclassical quantization of multidimensional systems

    Get PDF
    Low order classical perturbation theory is used to obtain semiclassical eigenvalues for a system of three anharmonically coupled oscillators. The results in the low energy region studied here agree well with the "exact" quantum values. The latter had been calculated by matrix diagonalization using a large basis set

    Purification of acidic protease from the cotyledons of germinating Indian bean (Dolichos lablab L. var lignosus) seeds

    Get PDF
    The positive correlation between the developments of acid, neutral and alkaline proteases (azocaseinolytic) with protein depletion suggest the involvement of these proteases in the degradation of proteins in germinating Indian bean. These proteases increased in the early stages of germination and decreased later. However, the activity of acid proteases was higher throughout the germination period compared with the activities of neutral and alkaline proteases. The acid protease from the cotyledons of 4-day old germinating Indian bean seedlings was purified to 152 folds by a five step procedure comprising - crude extract from cotyledons, (NH4)2SO4 fractionation, DEAE-cellulose, CM-cellulose and finally casein-agarose affinity chromatography. The molecular mass of acidic protease is 32 kDa.African Journal of Biotechnology Vol. 4 (7), pp. 703-707, 200

    Diffusion at constant speed in a model phase space

    Full text link
    We reconsider the problem of diffusion of particles at constant speed and present a generalization of the Telegrapher process to higher dimensional stochastic media (d>1d>1), where the particle can move along 2d2^d directions. We derive the equations for the probability density function using the ``formulae of differentiation'' of Shapiro and Loginov. The model is an advancement over similiar models of photon migration in multiply scattering media in that it results in a true diffusion at constant speed in the limit of large dimensions.Comment: Final corrected version RevTeX, 6 pages, 1 figur

    Mechanical behavior of fiber reinforced SiC/RBSN ceramic matrix composites: Theory and experiment

    Get PDF
    The mechanical behavior of continuous fiber reinforced SiC/RBSN (Reaction Bonded Silicon Nitride) composites with various fiber contents is evaluated. Both catastrophic and noncatastrophic failures are observed in tensile specimens. Damage and failure mechanisms are identified via in-situ monitoring using NDE (nondestructive evaluation) techniques through the loading history. Effects of fiber/matrix interface debonding (splitting) parallel to fibers are discussed. Statistical failure behavior of fibers is also observed, especially when the interface is weak. Micromechanical models incorporating residual stresses to calculate the critical matrix cracking strength, ultimate strength, and work of pull-out are reviewed and used to predict composite response. For selected test problems, experimental measurements are compared to analytical predictions

    Approaches to multiprocessor error recovery using an on-chip interconnect subsystem

    Get PDF
    For future multicores, a dedicated interconnect subsystem for on-chip monitors was found to be highly beneficial in terms of scalability, performance and area. In this thesis, such a monitor network (MNoC) is used for multicores to support selective error identification and recovery and maintain target chip reliability in the context of dynamic voltage and frequency scaling (DVFS). A selective shared memory multiprocessor recovery is performed using MNoC in which, when an error is detected, only the group of processors sharing an application with the affected processors are recovered. Although the use of DVFS in contemporary multicores provides significant protection from unpredictable thermal events, a potential side effect can be an increased processor exposure to soft errors. To address this issue, a flexible fault prevention and recovery mechanism has been developed to selectively enable a small amount of per-core dual modular redundancy (DMR) in response to increased vulnerability, as measured by the processor architectural vulnerability factor (AVF). Our new algorithm for DMR deployment aims to provide a stable effective soft error rate (SER) by using DMR in response to DVFS caused by thermal events. The algorithm is implemented in real-time on the multicore using MNoC and controller which evaluates thermal information and multicore performance statistics in addition to error information. DVFS experiments with a multicore simulator using standard benchmarks show an average 6% improvement in overall power consumption and a stable SER by using selective DMR versus continuous DMR deployment

    Purification and characterization of cysteine protease from germinating cotyledons of horse gram

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteolytic enzymes play central role in the biochemical mechanism of germination and intricately involved in many aspects of plant physiology and development. To study the mechanism of protein mobilization, undertaken the task of purifying and characterizing proteases, which occur transiently in germinating seeds of horse gram.</p> <p>Results</p> <p>Cysteine protease (CPRHG) was purified to homogeneity with 118 fold by four step procedure comprising Crude extract, (NH4)2SO4 fractionation, DEAE-Cellulose and CM-sephacel chromatography from the 2 day germinating cotyledons of horse gram (<it>Macrotyloma uniflorum </it>(Lam.) Verdc.). CPRHG is a monomer with molecular mass of 30 k Da, was determined by SDS-PAGE and gel filtration. The purified enzyme on IEF showed two isoforms having pI values of 5.85 and 6.1. CPRHG composed of high content of aspartic acid, glutamic acid and serine. The enzyme activity was completely inhibited by pCMB, iodoacetate and DEPC indicating cysteine and histidine residues at the active site. However, on addition of sulfhydryl reagents (cysteine, dithiothreitol, glutathione and beta-ME) reverse the strong inhibition by pCMB. The enzyme is fairly stable toward pH and temperature. Immunoblot analysis shows that the enzyme synthesized as zymogen (preproenzyme with 81 kDa) and processed to a 40 kDa proenzyme which was further degraded to give 30 kDa active enzyme.</p> <p>Conclusion</p> <p>It appears that the newly synthesized protease is inactive, and activation takes place during germination. CPRHG has a broad substrate specificity and stability in pH, temperature, etc. therefore, this protease may turn out to be an efficient choice for the pharmaceutical, medicinal, food, and biotechnology industry.</p

    Study of Sweep and Induced Dihedral Effects in Subsonic Axial Flow Compressor Passages—Part I: Design Considerations—Changes in Incidence, Deflection, and Streamline Curvature

    Get PDF
    This article presents the study of Tip Chordline Sweeping (TCS) and Axial Sweeping (AXS) of low-speed axial compressor rotor blades against the performance of baseline unswept rotor (UNS) for different tip clearance levels. The first part of the paper discusses the changes in design parameters when the blades are swept, while the second part throws light on the effect of sweep on tip leakage flow-related phenomena. 15 domains are studied with 5 sweep configurations (0∘, 20∘ TCS, 30∘ TCS, 20∘ AXS, and 30∘ AXS) and for 3 tip clearances (0.0%, 0.7%, and 2.7% of the blade chord). A commercial CFD package is employed for the flow simulations and analysis. Results are well validated with experimental data. Forward sweep reduced the flow incidences. This is true all over the span with axial sweeping while little higher incidences below the mid span are observed with tip chordline sweeping. Sweeping is observed to lessen the flow turning. AXS rotors demonstrated more efficient energy transfer among the rotors. Tip chordline sweep deflected the flow towards the hub while effective positive dihedral induced with axial sweeping resulted in outward deflection of flow streamlines. These deflections are more at lower mass flow rates

    The Constitution of Heavy Water

    Get PDF

    Study of Sweep and Induced Dihedral Effects in Subsonic Axial Flow Compressor Passages—Part II: Detailed Study of the Effects on Tip Leakage Phenomena

    Get PDF
    This article presents the detailed study of rotor tip leakage related phenomena in a low speed axial compressor rotor passages for three sweep configurations [Unswept (UNS), Tip Chordline Swept (TCS) and Axially Swept (AXS)]. Fifteen domains are numerically studied with 5 sweep configurations (0°, 20° TCS, 30° TCS, 20° AXS, and 30° AXS) and for 3 tip clearances (0.0%, 0.7% and 2.7% of the blade chord). Results were well validated with experimental data. Observations near the tip reveal that UNS rotor shows high sensitivity than the swept rotors in the blade pressure distribution with change in tip clearance. AXS rotor has high loading capability and less tip clearance effect on blade loading at the near stall mass flow. Downstream shift of the vortex rollup along the chord is observed with increased flow coefficient and increment in the tip gap height. In particular, the effect of flow coefficient is more predominant on this effect. Tip vortex-related flow blockage is less with the swept rotors. Among the rotors, the AXS rotor is found to incur low total pressure losses attributable to tip leakage. Effect of incidence is observed on the flow leakage direction
    corecore